William J Orts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1300838/publications.pdf

Version: 2024-02-01

36303 40979 9,512 165 51 93 citations h-index g-index papers 168 168 168 10871 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Redispersion and structural change evaluation of dried microfibrillated cellulose. Carbohydrate Polymers, 2021, 252, 117165.	10.2	47
2	Production of polyhydroxyalkanoate copolymers containing 4-hydroxybutyrate in engineered Bacillus megaterium. International Journal of Biological Macromolecules, 2021, 168, 86-92.	7.5	17
3	Per―and polyfluoroalkyl substances and their alternatives in paper food packaging. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2596-2625.	11.7	55
4	Torrefied agroâ€industrial residue as filler in natural rubber compounds. Journal of Applied Polymer Science, 2021, 138, 50684.	2.6	9
5	Safer Sunscreens: Investigation of Naturally Derived UV Absorbers for Potential Use in Consumer Products. ACS Sustainable Chemistry and Engineering, 2021, 9, 9085-9092.	6.7	16
6	Properties of gluten foams containing different additives. Industrial Crops and Products, 2020, 152, 112511.	5.2	5
7	Evaluation of biodegradation of polylactic acid mineral composites in composting conditions. Journal of Applied Polymer Science, 2020, 137, 48939.	2.6	9
8	Massaranduba Sawdust: A Potential Source of Charcoal and Activated Carbon. Polymers, 2019, 11, 1276.	4.5	18
9	Ketalization of 2â€heptanone to prolong its activity as mite repellant for the protection of honey bees. Journal of the Science of Food and Agriculture, 2019, 99, 6267-6277.	3.5	4
10	Air and Steam Gasification of Almond Biomass. Frontiers in Energy Research, 2019, 7, .	2.3	17
11	Nucleation and plasticization with recycled lowâ€molecularâ€weight polyâ€3â€hydroxybutyrate toughens virgin polyâ€3â€hydroxybutyrate. Journal of Applied Polymer Science, 2019, 136, 47432.	2.6	4
12	Plant-based materials and transitioning to a circular economy. Sustainable Production and Consumption, 2019, 19, 194-215.	11.0	149
13	Hydrothermal Carbonization of Various Paper Mill Sludges: An Observation of Solid Fuel Properties. Energies, 2019, 12, 858.	3.1	38
14	Bio-based thin films of cellulose nanofibrils and magnetite for potential application in green electronics. Carbohydrate Polymers, 2019, 207, 100-107.	10.2	33
15	Biological pretreatment of rice straw by ligninolytic <i>Bacillus</i> sp. strains for enhancing biogas production. Environmental Progress and Sustainable Energy, 2019, 38, e13036.	2.3	38
16	Activated carbons prepared by physical activation from different pretreatments of amazon piassava fibers. Journal of Natural Fibers, 2019, 16, 961-976.	3.1	15
17	Main Characteristics of Underexploited Amazonian Palm Fibers for Using as Potential Reinforcing Materials. Waste and Biomass Valorization, 2019, 10, 3125-3142.	3.4	9
18	CELLULOSE SHEETS MADE FROM MICRO/NANOFIBRILLATED FIBERS OF BAMBOO, JUTE AND EUCALYPTUS CELLULOSE PULPS. Cellulose Chemistry and Technology, 2019, 53, 291-305.	1.2	3

#	Article	IF	Citations
19	Torrefaction kinetics of almond and walnut shells. Journal of Thermal Analysis and Calorimetry, 2018, 131, 3065-3075.	3.6	19
20	Recycled polypropylene-polyethylene torrefied almond shell biocomposites. Industrial Crops and Products, 2018, 125, 425-432.	5.2	23
21	Renewable hybrid nanocatalyst from magnetite and cellulose for treatment of textile effluents. Carbohydrate Polymers, 2017, 163, 101-107.	10.2	35
22	Small-Angle Neutron Scattering Studies on an Idealized Diesel Biofuel Platform. Energy & Ener	5.1	3
23	Pilot scale high solids anaerobic digestion of steam autoclaved municipal solid waste (MSW) pulp. Renewable Energy, 2017, 113, 257-265.	8.9	15
24	Design and Testing of Safer, More Effective Preservatives for Consumer Products. ACS Sustainable Chemistry and Engineering, 2017, 5, 4320-4331.	6.7	16
25	Production of D-Xylonic Acid from Hemicellulose Using Artificial Enzyme Complexes. Journal of Microbiology and Biotechnology, 2017, 27, 77-83.	2.1	13
26	Biopolymer films to control $\langle i \rangle$ fusarium $\langle i \rangle$ dry rot and their application to preserve potato tubers. Journal of Applied Polymer Science, 2016, 133, .	2.6	2
27	A pilot-scale steam autoclave system for treating municipal solid waste for recovery of renewable organic content: Operational results and energy usage. Waste Management and Research, 2016, 34, 457-464.	3.9	5
28	Biorefinery Developments for Advanced Biofuels from a Sustainable Array of Biomass Feedstocks: Survey of Recent Biomass Conversion Research from Agricultural Research Service. Bioenergy Research, 2016, 9, 430-446.	3.9	26
29	Production of Glucaric Acid from Hemicellulose Substrate by Rosettasome Enzyme Assemblies. Molecular Biotechnology, 2016, 58, 489-496.	2.4	17
30	Torrefaction of almond shells: Effects of torrefaction conditions on properties of solid and condensate products. Industrial Crops and Products, 2016, 86, 40-48.	5.2	49
31	Effect of multiâ€branched PDLA additives on the mechanical and thermomechanical properties of blends with PLLA. Journal of Applied Polymer Science, 2016, 133, .	2.6	16
32	Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing. Cellulose, 2016, 23, 1239-1256.	4.9	54
33	Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content. International Journal of Biological Macromolecules, 2016, 87, 302-307.	7.5	61
34	Cloning and Expression of Pectobacterium carotovorum Endo-polygalacturonase Gene in Pichia pastoris for Production of Oligogalacturonates. BioResources, 2016, 11, .	1.0	6
35	Countercurrent Extraction of Soluble Sugars from Almond Hulls and Assessment of the Bioenergy Potential. Journal of Agricultural and Food Chemistry, 2015, 63, 2490-2498.	5.2	31
36	Leaching behavior of water-soluble carbohydrates from almond hulls. Industrial Crops and Products, 2015, 65, 488-495.	5. 2	6

#	Article	IF	CITATIONS
37	Antimicrobial Poly(lactic acid)-Based Nanofibres Developed by Solution Blow Spinning. Journal of Nanoscience and Nanotechnology, 2015, 15, 616-627.	0.9	20
38	Torrefaction of pomaces and nut shells. Bioresource Technology, 2015, 177, 58-65.	9.6	59
39	Torrefied biomassâ€polypropylene composites. Journal of Applied Polymer Science, 2015, 132, .	2.6	7
40	Starch Plastic Packaging and Agriculture Applications. , 2014, , 421-452.		12
41	Synthesis, Characterization and Nanocomposite Formation of Poly(glycerol succinate-co-maleate) with Nanocrystalline Cellulose. Journal of Polymers and the Environment, 2014, 22, 219-226.	5.0	25
42	Solution blow spun poly(lactic acid)/hydroxypropyl methylcellulose nanofibers with antimicrobial properties. European Polymer Journal, 2014, 54, 1-10.	5.4	57
43	Almond hulls as a biofuels feedstock: Variations in carbohydrates by variety and location in California. Industrial Crops and Products, 2014, 54, 109-114.	5.2	21
44	Modification of vital wheat gluten with phosphoric acid to produce high free swelling capacity. Journal of Applied Polymer Science, 2014, 131, .	2.6	15
45	Modification of wheat gluten with citric acid to produce superabsorbent materials. Journal of Applied Polymer Science, 2013, 129, 3192-3197.	2.6	36
46	Incorporation of poly(glycidylmethacrylate) grafted bacterial cellulose nanowhiskers in poly(lactic) Tj ETQq0 0 49, 2062-2072.	0 rgBT /Ove 5.4	rlock 10 Tf 50 59
47	Properties of electrospun pollock gelatin/poly(vinyl alcohol) and pollock gelatin/poly(lactic acid) fibers. International Journal of Biological Macromolecules, 2013, 55, 214-220.	7.5	21
48	Influence of Disperse Phase Characteristics on Stability, Physical and Antimicrobial Properties of Emulsions Containing Cinnamaldehyde. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 233-241.	1.9	21
49	Biobased adhesives, gums, emulsions, and binders: current trends and future prospects. Journal of Adhesion Science and Technology, 2013, 27, 1972-1997.	2.6	65
50	Differences in Alcoholâ€Soluble Protein from Genetically Altered Wheat Using Capillary Zone Electrophoresis, One―and Twoâ€Dimensional Electrophoresis, and a Novel Gluten Matrix Association Factor Analysis. Cereal Chemistry, 2013, 90, 13-23.	2.2	1
51	Solid lipid particles in lipid films to control the diffusive release of 2-heptanone. Pest Management Science, 2013, 69, 975-982.	3.4	4
52	Physical Characteristics of Genetically Altered Wheat Related to Technological Protein Separation. Cereal Chemistry, 2013, 90, 1-12.	2.2	4
53	Structural and Morphological Characterization of Micro and Nanofibers Produced by Electrospinning and Solution Blow Spinning: A Comparative Study. Advances in Materials Science and Engineering, 2013, 2013, 1-14.	1.8	124
54	Expression and Characterization of <i>Coprothermobacter proteolyticus </i> Alkaline Serine Protease. Scientific World Journal, The, 2013, 2013, 1-6.	2.1	9

#	Article	IF	CITATIONS
55	Use of Microscopy To Assess Bran Removal Patterns in Milled Rice. Journal of Agricultural and Food Chemistry, 2012, 60, 6960-6965.	5.2	15
56	Isolation and characterization of a novel GH67 \hat{l} ±-glucuronidase from a mixed culture. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1245-1251.	3.0	12
57	Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polymer Degradation and Stability, 2012, 97, 1822-1828.	5.8	328
58	Starch–lipid composites containing cinnamaldehyde. Starch/Staerke, 2012, 64, 219-228.	2.1	2
59	Thermal properties of poly(ethylene terephthalate) recovered from municipal solid waste by steam autoclaving. Journal of Applied Polymer Science, 2012, 126, 1698-1708.	2.6	6
60	Isolation of α-Glucuronidase Enzyme from a Rumen Metagenomic Library. Protein Journal, 2012, 31, 206-211.	1.6	23
61	Starch. , 2012, , 5-32.		6
62	Preparation and Characterization of Novel Micro- and Nanocomposite Hydrogels Containing Cellulosic Fibrils. Journal of Agricultural and Food Chemistry, 2011, 59, 9433-9442.	5.2	74
63	Polyanilineâ€modified cellulose nanofibrils as reinforcement of a smart polyurethane. Polymer International, 2011, 60, 743-750.	3.1	52
64	Meet our Authors. MRS Bulletin, 2011, 36, 693-694.	3.5	0
65	Wheat Flour Exposed to Ethanol Yields Dough with Unexpected Properties. Cereal Chemistry, 2011, 88, 509-517.	2.2	4
66	Development of an integrated pretreatment fractionation process for fermentable sugars and lignin: Application to almond (Prunus dulcis) shell. Biomass and Bioenergy, 2011, 35, 4435-4441.	5.7	13
67	HPMC reinforced with different cellulose nano-particles. Carbohydrate Polymers, 2011, 86, 1549-1557.	10.2	135
68	Biodegradation of Thermoplastic Starch and its Blends with Poly(lactic acid) and Polyethylene: Influence of Morphology. Macromolecular Chemistry and Physics, 2011, 212, 1147-1154.	2.2	30
69	Nano and submicrometric fibers of poly(<scp>D</scp> , <scp>L</scp> â€lactide) obtained by solution blow spinning: Process and solution variables. Journal of Applied Polymer Science, 2011, 122, 3396-3405.	2.6	124
70	Ethanol in biorefining and dehydration of agricultural materials: energy, capital cost, and product quality implications. Biofuels, Bioproducts and Biorefining, 2011, 5, 37-53.	3.7	3
71	Starch-based foam composite materials: Processing and bioproducts. MRS Bulletin, 2011, 36, 696-702.	3.5	19
72	Fish Gelatin. , 2011, , 143-157.		1

#	Article	IF	Citations
73	Microstructure of Desmanthus illinoensis. , 2010, , .		O
74	Extraction of ethanol with higher carboxylic acid solvents and their toxicity to yeast. Separation and Purification Technology, 2010, 72, 180-185.	7.9	15
75	Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide. Journal of Materials Science, 2010, 45, 4977-4985.	3.7	69
76	Water absorbance and thermal properties of sulfated wheat gluten films. Journal of Applied Polymer Science, 2010, 116, 2638-2644.	2.6	3
77	Structural, Electrical, Mechanical, and Thermal Properties of Electrospun Poly(lactic) Tj ETQq1 1 0.784314 rgBT /0	Overlock 1	.0 <u>Tf</u> 50 582
78	Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 2010, 81, 83-92.	10.2	850
79	Peering into the secrets of food and agricultural co-products. Proceedings of SPIE, 2010, , .	0.8	0
80	Encapsulation of Plant Oils in Porous Starch Microspheres. Journal of Agricultural and Food Chemistry, 2010, 58, 4180-4184.	5.2	110
81	Finding the "Bio―in Biobased Products: Electrophoretic Identification of Wheat Proteins in Processed Products. Journal of Agricultural and Food Chemistry, 2010, 58, 4169-4179.	5.2	4
82	Biodegradable composites based on starch/EVOH/glycerol blends and coconut fibers. Journal of Applied Polymer Science, 2009, 111, 612-618.	2.6	27
83	Electrically Conductive Nanocomposites Made from Cellulose Nanofibrils and Polyaniline. Journal of Nanoscience and Nanotechnology, 2009, 9, 2917-2922.	0.9	66
84	Fresh fruit: microstructure, texture, and quality. , 2009, , .		2
85	Electrospinning of Polyaniline/Poly(Lactic Acid) Ultrathin Fibers: Process and Statistical Modeling using a Nonâ€Gaussian Approach. Macromolecular Theory and Simulations, 2009, 18, 528-536.	1.4	21
86	Development of conducting polyaniline/poly(lactic acid) nanofibers by electrospinning. Journal of Applied Polymer Science, 2009, 112, 744-753.	2.6	77
87	Solution blow spinning: A new method to produce micro―and nanofibers from polymer solutions. Journal of Applied Polymer Science, 2009, 113, 2322-2330.	2.6	528
88	Removal of paraquat pesticide from aqueous solutions using a novel adsorbent material based on polyacrylamide and methylcellulose hydrogels. Journal of Applied Polymer Science, 2009, 114, 2139-2148.	2.6	68
89	Molecular cloning and characterization of multidomain xylanase from manure library. World Journal of Microbiology and Biotechnology, 2009, 25, 2071-2078.	3.6	20
90	Purification and Characterization of a Glycoside Hydrolase Family 43 \hat{l}^2 -xylosidase from Geobacillus thermoleovorans IT-08. Applied Biochemistry and Biotechnology, 2009, 155, 1-10.	2.9	42

#	Article	IF	Citations
91	An \hat{l}_{\pm} -Glucuronidase Enzyme Activity Assay Adaptable for Solid Phase Screening. Applied Biochemistry and Biotechnology, 2009, 155, 11-17.	2.9	8
92	Physicochemical and morphological properties of poly(acrylamide) and methylcellulose hydrogels: Effects of monomer, crosslinker and polysaccharide compositions. Polymer Engineering and Science, 2009, 49, 2467-2474.	3.1	21
93	Effects of drying temperature on barrier and mechanical properties of cold-water fish gelatin films. Journal of Food Engineering, 2009, 95, 327-331.	5.2	54
94	Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresource Technology, 2009, 100, 5196-5202.	9.6	261
95	Edible Films and Coatings: Why, What, and How?. , 2009, , 1-23.		103
96	Starch-based nanocomposites., 2009,, 205-251.		11
97	Cloning of Bacillus licheniformis Xylanase Gene and Characterization of Recombinant Enzyme. Current Microbiology, 2008, 57, 301-305.	2.2	32
98	Self-assembled films of cellulose nanofibrils and poly(o-ethoxyaniline). Colloid and Polymer Science, 2008, 286, 1265-1272.	2.1	24
99	Temperature Related Structural Changes in Wheat and Corn Starch Granules and Their Effects on Gels and Dry Foam. Starch/Staerke, 2008, 60, 476-484.	2.1	29
100	Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer, 2008, 49, 599-609.	3.8	267
101	Extraction of ethanol with higher alcohol solvents and their toxicity to yeast. Separation and Purification Technology, 2008, 63, 444-451.	7.9	51
102	Cold water fish gelatin films: Effects of cross-linking on thermal, mechanical, barrier, and biodegradation properties. European Polymer Journal, 2008, 44, 3748-3753.	5.4	143
103	Effect of relative humidity on the morphology of electrospun polymer fibers. Canadian Journal of Chemistry, 2008, 86, 590-599.	1.1	100
104	Agricultural Chemistry and Bioenergy. Journal of Agricultural and Food Chemistry, 2008, 56, 3892-3899.	5.2	51
105	Poly(hydroxyalkanoates): Biorefinery polymers with a whole range of applications. The work of Robert H. Marchessault. Canadian Journal of Chemistry, 2008, 86, 628-640.	1.1	45
106	Fine Structure of Starch-Clay Composites as Biopolymers. Microscopy and Microanalysis, 2008, 14, 1500-1501.	0.4	0
107	Electron microscopy as a valuable tool in designing biobased products. Microscopy and Microanalysis, 2008, 14, 1498-1499.	0.4	O
108	Electrospun Nanofibers of Poly(vinyl alcohol) Reinforced with Cellulose Nanofibrils. Journal of Biobased Materials and Bioenergy, 2008, 2, 231-242.	0.3	78

#	Article	IF	CITATIONS
109	Wheat Proteins Extracted from Flour and Batter with Aqueous Ethanol at Subambient Temperatures. Cereal Chemistry, 2007, 84, 497-501.	2.2	11
110	Use of Synthetic Polymers and Biopolymers for Soil Stabilization in Agricultural, Construction, and Military Applications. Journal of Materials in Civil Engineering, 2007, 19, 58-66.	2.9	113
111	Heat Expanded Starch-Based Compositions. Journal of Agricultural and Food Chemistry, 2007, 55, 3936-3943.	5.2	13
112	Cellulose Fiber Reinforced Starch-Based Foam Composites. Journal of Biobased Materials and Bioenergy, 2007, 1, 360-366.	0.3	13
113	Hydrogen-bond networks in linear, branched and tertiary alcohols. Chemical Engineering Science, 2007, 62, 3019-3031.	3.8	33
114	In situ lamination of starch-based baked foam packaging with degradable films. Packaging Technology and Science, 2007, 20, 77-85.	2.8	14
115	Blends of starch with ethylene vinyl alcohol copolymers: effect of water, glycerol, and amino acids as plasticizers. Polymers for Advanced Technologies, 2007, 18, 629-635.	3.2	40
116	Controlled release of 2-heptanone using starch gel and polycaprolactone matrices and polymeric films. Polymers for Advanced Technologies, 2007, 18, 636-642.	3.2	11
117	Extruded starch–nanoclay nanocomposites: Effects of glycerol and nanoclay concentration. Polymer Engineering and Science, 2007, 47, 1898-1904.	3.1	88
118	Native or Raw Starch Digestion:Â A Key Step in Energy Efficient Biorefining of Grain. Journal of Agricultural and Food Chemistry, 2006, 54, 353-365.	5.2	203
119	Permeability of Starch Gel Matrices and Select Films to Solvent Vapors. Journal of Agricultural and Food Chemistry, 2006, 54, 3297-3304.	5.2	14
120	Thermoformed Wheat Gluten Biopolymers. Journal of Agricultural and Food Chemistry, 2006, 54, 349-352.	5.2	43
121	Compression Deformation and Structural Relationships of Medium Grain Cooked Rice. Cereal Chemistry, 2006, 83, 636-640.	2.2	15
122	The azidation of starch. Carbohydrate Polymers, 2006, 65, 529-534.	10.2	20
123	Rheological and mechanical properties of cross-linked fish gelatins. Polymer, 2006, 47, 6379-6386.	3.8	131
124	Ethanol and water capacities of alcohols: A molecular dynamics study. Chemical Engineering Science, 2006, 61, 5834-5840.	3.8	23
125	Solvent extraction of ethanol from aqueous solutions using biobased oils, alcohols, and esters. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 153-157.	1.9	24
126	Properties of baked starch foam with natural rubber latex. Industrial Crops and Products, 2006, 24, 34-40.	5.2	92

#	Article	IF	Citations
127	Effects of Processing Conditions on Nanoclay Dispersion in Starch-Clay Nanocomposites. Cereal Chemistry, 2006, 83, 300-305.	2.2	51
128	Starch Polymers., 2005,,.		3
129	Rheology of starch–clay nanocomposites. Carbohydrate Polymers, 2005, 59, 467-475.	10.2	112
130	Application of Cellulose Microfibrils in Polymer Nanocomposites. Journal of Polymers and the Environment, 2005, 13, 301-306.	5.0	248
131	Solvent Extraction of Ethanol from Aqueous Solutions. I. Screening Methodology for Solvents. Industrial & Engineering Chemistry Research, 2005, 44, 6789-6796.	3.7	50
132	Solvent Extraction of Ethanol from Aqueous Solutions. II. Linear, Branched, and Ring-Containing Alcohol Solvents. Industrial & Engineering Chemistry Research, 2005, 44, 6797-6803.	3.7	24
133	Lightweight Concrete Containing an Alkaline Resistant Starch-Based Aquagel. Journal of Polymers and the Environment, 2004, 12, 189-196.	5.0	11
134	Histological Structures of Cooked Rice Grain. Journal of Agricultural and Food Chemistry, 2003, 51, 7019-7023.	5.2	75
135	Observation Method for the Histological Structure of Cooked Rice Kernels Using Adhesive Tape. Journal of the Japanese Society for Food Science and Technology, 2003, 50, 319-323.	0.1	1
136	Flavor Retention and Physical Properties of Rice Cakes Prepared from Coated Rice Grain. Cereal Chemistry, 2002, 79, 387-391.	2.2	4
137	Sorption and Vapor Transmission Properties of Uncompressed and Compressed Microcellular Starch Foam. Journal of Agricultural and Food Chemistry, 2002, 50, 7100-7104.	5.2	12
138	Biopolymer Additives for the Reduction of Soil Erosion Losses during Irrigation. ACS Symposium Series, 2001, , 102-116.	0.5	10
139	Properties of starch-based foam formed by compression/explosion processing. Industrial Crops and Products, 2001, 13, 135-143.	5.2	75
140	In situ laminating process for baked starch-based foams. Industrial Crops and Products, 2001, 14, 125-134.	5.2	27
141	Starch, fiber and CaCO3 effects on the physical properties of foams made by a baking process. Industrial Crops and Products, 2001, 14, 201-212.	5.2	132
142	Synthesis and properties of water-resistant poly(glucaramides). Industrial Crops and Products, 2000, 12, 125-135.	5.2	6
143	Biopolymer additives to reduce erosion-induced soil losses during irrigation. Industrial Crops and Products, 2000, 11, 19-29.	5.2	120
144	Wheat Starch Effects on the Textural Characteristics of Puffed Brown Rice Cakes. Cereal Chemistry, 2000, 77, 18-23.	2.2	11

#	Article	IF	Citations
145	Starch-based lightweight concrete: effect of starch source, processing method, and aggregate geometry. Industrial Crops and Products, 1999, 9, 133-144.	5.2	19
146	Reducing Soil Erosion Losses with Small Applications of Biopolymers. ACS Symposium Series, 1999, , 235-247.	0.5	3
147	Volatile Flavor Components of Rice Cakes. Journal of Agricultural and Food Chemistry, 1999, 47, 4353-4356.	5 . 2	143
148	Moderate strength lightweight concrete from organic aquagel mixtures. Industrial Crops and Products, 1998, 8, 123-132.	5.2	24
149	The 30 m Small-Angle Neutron Scattering Instruments at the National Institute of Standards and Technology. Journal of Applied Crystallography, 1998, 31, 430-445.	4.5	613
150	Analysis of Lamellar Structure in Semicrystalline Polymers by Studying the Absorption of Water and Ethylene Glycol in Nylons Using Small-Angle Neutron Scattering. Macromolecules, 1998, 31, 142-152.	4.8	70
151	Enhanced Ordering of Liquid Crystalline Suspensions of Cellulose Microfibrils:Â A Small Angle Neutron Scattering Study. Macromolecules, 1998, 31, 5717-5725.	4.8	276
152	Neutron Reflectivity and Atomic Force Microscopy Studies of a Lipid Bilayer in Water Adsorbed to the Surface of a Silicon Single Crystal. Langmuir, 1996, 12, 1343-1350.	3.5	291
153	Water adsorption at a polyimide/silicon wafer interface. Polymer Engineering and Science, 1995, 35, 1000-1004.	3.1	65
154	Film Thickness Dependent Thermal Expansion in Ultrathin Poly(methyl methacrylate) Films on Silicon. Macromolecules, 1995, 28, 771-774.	4.8	106
155	13C NMR Determination of the Degree of Cocrystallization in Random Copolymers of Poly(.betahydroxybutyrate-cobetahydroxyvalerate). Macromolecules, 1995, 28, 6394-6400.	4.8	71
156	Cocrystallization in random copolymers of poly(\hat{l}^2 -hydroxybutyrate-co- \hat{l}^2 -hydroxyvalerate) and its effect on crystalline morphology. Canadian Journal of Chemistry, 1995, 73, 2094-2100.	1.1	12
157	Density profile of spin cast polymethylmethacrylate thin films. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 2475-2480.	2.1	18
158	Hydration in semicrystalline polymers: Small-angle neutron scattering studies of the effect of drawing in nylon-6 fibers. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 2695-2703.	2.1	25
159	Observation of temperature dependent thicknesses in ultrathin polystyrene films on silicon. Physical Review Letters, 1993, 71, 867-870.	7.8	200
160	Measurement of the crystallinity of poly(\hat{l}^2 -hydroxybutyrate-co- \hat{l}^2 -hydroxyvalerate) copolymers by inverse gas chromatography. Macromolecules, 1992, 25, 949-953.	4.8	30
161	The density profile at a polymer/solid interface. Polymer, 1992, 33, 5081-5084.	3.8	15
162	Blends of bacterial and synthetic poly(\hat{l}^2 -hydroxybutyrate): effect of tacticity on melting behaviour. Polymer, 1992, 33, 4647-4649.	3.8	58

#	Article	IF	CITATIONS
163	Thermodynamics of the melting point depression in poly(\hat{l}^2 -hydroxybutyrate-co- \hat{l}^2 -hydroxyvalerate) copolymers. Macromolecules, 1991, 24, 6435-6438.	4.8	61
164	Saxs Measurement of Morphology and its Relationship to Melting Point Depression in Poly(Beta-Hydroxybutyrate-CO-Beta-Hydroxyvalerate) Random Copolymers. Advances in X-ray Analysis, 1991, 35, 645-651.	0.0	0
165	Changes on structural characteristics of cellulose pulp fiber incubated for different times in anaerobic digestate. Cerne, 0, 27, .	0.9	5