Kendi F Davies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1300658/publications.pdf

Version: 2024-02-01

186265 197818 8,730 50 28 citations h-index g-index papers

50 50 50 12023 docs citations times ranked citing authors all docs

49

#	Article	IF	CITATIONS
1	Plant community data from a statewide survey of paired serpentine and nonâ€serpentine soils in California, USA. Ecology, 2022, , e3644.	3.2	O
2	Nitrogen increases earlyâ€stage and slows lateâ€stage decomposition across diverse grasslands. Journal of Ecology, 2022, 110, 1376-1389.	4.0	12
3	Nutrient identity modifies the destabilising effects of eutrophication in grasslands. Ecology Letters, 2022, 25, 754-765.	6.4	17
4	The dynamic matrix predicts population response to long-term experimental forest fragmentation. Landscape Ecology, 2022, 37, 1483-1495.	4.2	3
5	Experimental habitat fragmentation disrupts host–parasite interaction over decades via life•ycle bottlenecks. Ecology, 2022, 103, e3758.	3.2	5
6	Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties. Global Change Biology, 2020, 26, 7173-7185.	9.5	25
7	Shrinking skinks: lizard body size declines in a long-term forest fragmentation experiment. Landscape Ecology, 2019, 34, 1395-1409.	4.2	8
8	Belowground Biomass Response to Nutrient Enrichment Depends on Light Limitation Across Globally Distributed Grasslands. Ecosystems, 2019, 22, 1466-1477.	3.4	34
9	Experimental habitat fragmentation disrupts nematode infections in Australian skinks. Ecology, 2019, 100, e02547.	3.2	12
10	A longâ€term habitat fragmentation experiment leads to morphological change in a species of carabid beetle. Ecological Entomology, 2018, 43, 282-293.	2.2	6
11	Spatial and temporal variability of fragmentation effects in a long term, eucalypt forest fragmentation experiment. Landscape Ecology, 2018, 33, 609-623.	4.2	4
12	Generalist predator's niche shifts reveal ecosystem changes in an experimentally fragmented landscape. Ecography, 2018, 41, 1209-1219.	4.5	12
13	Short―and longâ€ŧerm effects of habitat fragmentation differ but are predicted by response to the matrix. Ecology, 2017, 98, 807-819.	3.2	27
14	Evaluating conceptual models of landscape change. Ecography, 2017, 40, 74-84.	4.5	35
15	Differential and delayed response of two ant species to habitat fragmentation via the introduction of a pine matrix. Ecological Entomology, 2016, 41, 554-561.	2.2	1
16	Differentiating between niche and neutral assembly in metacommunities using null models of $\hat{l}^2 \hat{a} \in diversity$. Oikos, 2016, 125, 778-789.	2.7	123
17	The use of traits to interpret responses to large scale - edge effects: a study of epigaeic beetle assemblages across a Eucalyptus forest and pine plantation edge. Landscape Ecology, 2016, 31, 1815-1831.	4.2	8
18	Addition of multiple limiting resources reduces grassland diversity. Nature, 2016, 537, 93-96.	27.8	355

#	Article	IF	CITATIONS
19	Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529, 390-393.	27.8	564
20	Grassland productivity limited by multiple nutrients. Nature Plants, 2015, 1, 15080.	9.3	403
21	Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology, 2015, 96, 1459-1465.	3.2	143
22	Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances, 2015, 1, e1500052.	10.3	2,541
23	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	12.8	143
24	A continentâ€wide study reveals clear relationships between regional abiotic conditions and postâ€dispersal seed predation. Journal of Biogeography, 2015, 42, 662-670.	3.0	23
25	Anthropogenicâ€based regionalâ€scale factors most consistently explain plotâ€level exotic diversity in grasslands. Global Ecology and Biogeography, 2014, 23, 802-810.	5.8	32
26	Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 2014, 508, 521-525.	27.8	409
27	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	27.8	669
28	Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Global Ecology and Biogeography, 2013, 22, 202-212.	5.8	121
29	Regional Contingencies in the Relationship between Aboveground Biomass and Litter in the World's Grasslands. PLoS ONE, 2013, 8, e54988.	2.5	27
30	Response to Comments on "Disentangling the Drivers of β Diversity Along Latitudinal and Elevational Gradients― Science, 2012, 335, 1573-1573.	12.6	8
31	Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richness― Science, 2012, 335, 1441-1441.	12.6	30
32	Native communities determine the identity of exotic invaders even at scales at which communities are unsaturated. Diversity and Distributions, 2011, 17, 35-42.	4.1	67
33	Disentangling the Drivers of \hat{l}^2 Diversity Along Latitudinal and Elevational Gradients. Science, 2011, 333, 1755-1758.	12.6	617
34	Statistical models for monitoring and predicting effects of climate change and invasion on the free-living insects and a spider from sub-Antarctic Heard Island. Polar Biology, 2011, 34, 119-125.	1.2	18
35	Phylogenetic patterns differ for native and exotic plant communities across a richness gradient in Northern California. Diversity and Distributions, 2010, 16, 892-901.	4.1	56
36	Factors controlling community structure in heterogeneous metacommunities. Journal of Animal Ecology, 2009, 78, 937-944.	2.8	30

3

#	Article	IF	CITATION
37	Species' traits predict the effects of disturbance and productivity on diversity. Ecology Letters, 2008, 11, 348-356.	6.4	141
38	The status of two exotic terrestrial Crustacea on sub-Antarctic Macquarie Island. Polar Record, 2008, 44, 15-23.	0.8	12
39	PRODUCTIVITY ALTERS THE SCALE DEPENDENCE OF THE DIVERSITY–INVASIBILITY RELATIONSHIP. Ecology, 2007, 88, 1940-1947.	3.2	86
40	Invasion in a heterogeneous world: resistance, coexistence or hostile takeover?. Ecology Letters, 2007, 10, 77-94.	6.4	343
41	INVASION IN A DIVERSITY HOTSPOT: EXOTIC COVER AND NATIVE RICHNESS IN THE CALIFORNIAN SERPENTINE FLORA. Ecology, 2006, 87, 695-703.	3.2	57
42	REGIONAL AND LOCAL SPECIES RICHNESS IN AN INSULAR ENVIRONMENT: SERPENTINE PLANTS IN CALIFORNIA. Ecological Monographs, 2006, 76, 41-56.	5.4	157
43	SPATIAL HETEROGENEITY EXPLAINS THE SCALE DEPENDENCE OF THE NATIVE–EXOTIC DIVERSITY RELATIONSHIP. Ecology, 2005, 86, 1602-1610.	3.2	375
44	A SYNERGISTIC EFFECT PUTS RARE, SPECIALIZED SPECIES AT GREATER RISK OF EXTINCTION. Ecology, 2004, 85, 265-271.	3.2	254
45	EFFECTS OF WITHIN- AND BETWEEN-PATCH PROCESSES ON COMMUNITY DYNAMICS IN A FRAGMENTATION EXPERIMENT. Ecology, 2001, 82, 1830-1846.	3.2	82
46	Effects of within- and between-Patch Processes on Community Dynamics in a Fragmentation Experiment. Ecology, 2001, 82, 1830.	3.2	12
47	WHICH TRAITS OF SPECIES PREDICT POPULATION DECLINES IN EXPERIMENTAL FOREST FRAGMENTS?. Ecology, 2000, 81, 1450-1461.	3.2	337
48	Which Traits of Species Predict Population Declines in Experimental Forest Fragments?. Ecology, 2000, 81, 1450.	3.2	32
49	Statistical models of invertebrate distribution on Macquarie Island: a tool to assess climate change and local human impacts. Polar Biology, 1999, 21, 240-250.	1.2	25
50	Effects of habitat fragmentation on carabid beetles: experimental evidence. Journal of Animal Ecology, 1998, 67, 460-471.	2.8	229