Jon Magnuson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1298941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea) Tj ETQq1 1	1 0.78431 17.5	4 rgBT /Ove
2	The <i>Fusarium graminearum</i> Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization. Science, 2007, 317, 1400-1402.	12.6	837
3	Genome sequence of the model mushroom Schizophyllum commune. Nature Biotechnology, 2010, 28, 957-963.	17.5	490
4	The Microbial Opsin Family of Optogenetic Tools. Cell, 2011, 147, 1446-1457.	28.9	471
5	Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nature Biotechnology, 2011, 29, 922-927.	17.5	428
6	Comparative genomics of citric-acid-producing <i>Aspergillus niger</i> ATCC 1015 versus enzyme-producing CBS 513.88. Genome Research, 2011, 21, 885-897.	5.5	329
7	Widespread adenine N6-methylation of active genes in fungi. Nature Genetics, 2017, 49, 964-968.	21.4	292
8	Trichloroethene Reductive Dehalogenase from <i>Dehalococcoides ethenogenes</i> : Sequence of <i>tceA</i> and Substrate Range Characterization. Applied and Environmental Microbiology, 2000, 66, 5141-5147.	3.1	271
9	Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications, 2020, 11, 5125.	12.8	258
10	Tracking the roots of cellulase hyperproduction by the fungus <i>Trichoderma reesei</i> using massively parallel DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16151-16156.	7.1	190
11	Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytologist, 2018, 217, 1213-1229.	7.3	185
12	Determinants of protein hyperthermostability: purification and amino acid sequence of rubredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus and secondary structure of the zinc adduct by NMR. Biochemistry, 1991, 30, 10885-10895.	2.5	175
13	Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nature Genetics, 2018, 50, 1688-1695.	21.4	160
14	Linking secondary metabolites to gene clusters through genome sequencing of six diverse <i>Aspergillus</i> species. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E753-E761.	7.1	126
15	A comparative genomics study of 23 Aspergillus species from section Flavi. Nature Communications, 2020, 11, 1106.	12.8	125
16	Characterization of functionalized nanoporous supports for protein confinement. Nanotechnology, 2006, 17, 5531-5538.	2.6	109
17	Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors. ACS Sustainable Chemistry and Engineering, 2014, 2, 207-215.	6.7	101
18	The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA. BMC Plant Biology, 2010, 10, 83.	3.6	98

Jon Magnuson

#	Article	IF	CITATIONS
19	Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research, 2017, 22, 187-215.	4.6	69
20	Identification of Genes Associated with Morphology in Aspergillus niger by Using Suppression Subtractive Hybridization. Applied and Environmental Microbiology, 2004, 70, 2474-2485.	3.1	51
21	Differential Expression in <i>Phanerochaete chrysosporium</i> of Membrane-Associated Proteins Relevant to Lignin Degradation. Applied and Environmental Microbiology, 2008, 74, 7252-7257.	3.1	46
22	Proteomic and Functional Analysis of the Cellulase System Expressed by Postia placenta during Brown Rot of Solid Wood. Applied and Environmental Microbiology, 2011, 77, 7933-7941.	3.1	46
23	Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environmental Microbiology, 2021, 23, 5716-5732.	3.8	44
24	Fungal glycoside hydrolases for saccharification of lignocellulose: outlook for new discoveries fueled by genomics and functional studies. Cellulose, 2009, 16, 687-697.	4.9	32
25	Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger. Fungal Genetics and Biology, 2013, 61, 120-132.	2.1	25
26	Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species. Applied Microbiology and Biotechnology, 2017, 101, 6099-6110.	3.6	22
27	Fungal Ligninolytic Enzymes and Their Applications. Microbiology Spectrum, 2016, 4, .	3.0	19
28	Evolutionary innovations through gain and loss of genes in the ectomycorrhizal Boletales. New Phytologist, 2022, 233, 1383-1400.	7.3	19
29	A Green Nonsulfur Bacterium, Dehalococcoides ethenogenes , with the LexA Binding Sequence Found in Gram-Positive Organisms. Journal of Bacteriology, 2002, 184, 6073-6080.	2.2	17
30	Nitrogenase iron-molybdenum cofactor binding site: Protein conformational changes associated with cofactor binding. Tetrahedron, 1997, 53, 11971-11984.	1.9	12
31	Techno-economic analysis of corn stover fungal fermentation to ethanol. Applied Energy, 2013, 111, 657-668.	10.1	12
32	Proteomics for Validation of Automated Gene Model Predictions. Methods in Molecular Biology, 2009, 492, 447-452.	0.9	4
33	A Conversation with Blake Simmons, Vice President, Deconstruction Division, and Jon Magnuson, Director, Fungal Biotechnology Group, Joint BioEnergy Institute, Emeryville, CA. Industrial Biotechnology, 2013, 9, 108-112.	0.8	2
34	Approaches to understanding protein hypersecretion in fungi. Fungal Biology Reviews, 2016, 30, 145-151.	4.7	2