Javier A Carrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1298898/publications.pdf

Version: 2024-02-01

40 papers

6,028 citations

30 h-index 302126 39 g-index

41 all docs

41 docs citations

41 times ranked

9841 citing authors

#	Article	IF	Citations
1	The resident macrophages in murine pancreatic islets are constantly probing their local environment, capturing beta cell granules and blood particles. Diabetologia, 2018, 61, 1374-1383.	6.3	48
2	Opposing Roles of Dendritic Cell Subsets in Experimental GN. Journal of the American Society of Nephrology: JASN, 2018, 29, 138-154.	6.1	65
3	Type I and II Interferon Receptors Differentially Regulate Type 1 Diabetes Susceptibility in Male Versus Female NOD Mice. Diabetes, 2018, 67, 1830-1835.	0.6	20
4	<i>Listeria monocytogenes</i> induces an interferonâ€enhanced activation of the integrated stress response that is detrimental for resolution of infection in mice. European Journal of Immunology, 2017, 47, 830-840.	2.9	14
5	The islet-resident macrophage is in an inflammatory state and senses microbial products in blood. Journal of Experimental Medicine, 2017, 214, 2369-2385.	8.5	89
6	Resident macrophages of pancreatic islets have a seminal role in the initiation of autoimmune diabetes of NOD mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10418-E10427.	7.1	119
7	A type I IFN-dependent DNA damage response regulates the genetic program and inflammasome activation in macrophages. ELife, 2017, 6, .	6.0	40
8	The role of islet antigen presenting cells and the presentation of insulin in the initiation of autoimmune diabetes in the <scp>NOD</scp> mouse. Immunological Reviews, 2016, 272, 183-201.	6.0	32
9	Antigen presentation events during the initiation of autoimmune diabetes in the NOD mouse. Journal of Autoimmunity, 2016, 71, 19-25.	6.5	21
10	Macrophages and dendritic cells in islets of Langerhans in diabetic autoimmunity: a lesson on cell interactions in a mini-organ. Current Opinion in Immunology, 2016, 43, 54-59.	5 . 5	26
11	IL-1–induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. Journal of Experimental Medicine, 2016, 213, 251-271.	8.5	81
12	Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5496-502.	7.1	85
13	The pancreas anatomy conditions the origin and properties of resident macrophages. Journal of Experimental Medicine, 2015, 212, 1497-1512.	8.5	235
14	Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection. ELife, 2015, 4, .	6.0	65
15	The central role of antigen presentation in islets of Langerhans in autoimmune diabetes. Current Opinion in Immunology, 2014, 26, 32-40.	5.5	46
16	Bhlhe40 controls cytokine production by T cells and is essential for pathogenicity in autoimmune neuroinflammation. Nature Communications, 2014, 5, 3551.	12.8	152
17	Embryonic and Adult-Derived Resident Cardiac Macrophages Are Maintained through Distinct Mechanisms at Steady State and during Inflammation. Immunity, 2014, 40, 91-104.	14.3	1,120
18	A Minor Subset of Batf3-Dependent Antigen-Presenting Cells in Islets of Langerhans Is Essential for the Development of Autoimmune Diabetes. Immunity, 2014, 41, 657-669.	14.3	124

#	Article	IF	Citations
19	Cutting Edge: Conditional MHC Class II Expression Reveals a Limited Role for B Cell Antigen Presentation in Primary and Secondary CD4 T Cell Responses. Journal of Immunology, 2013, 191, 545-550.	0.8	31
20	Identifying the Initiating Events of Anti- $\langle i \rangle$ Listeria $\langle i \rangle$ Responses Using Mice with Conditional Loss of IFN- $\hat{1}^3$ Receptor Subunit 1 (IFNGR1). Journal of Immunology, 2013, 191, 4223-4234.	0.8	49
21	Defining the Transcriptional and Cellular Landscape of Type 1 Diabetes in the NOD Mouse. PLoS ONE, 2013, 8, e59701.	2.5	101
22	Mechanisms and Immunological Effects of Apoptosis Caused by Listeria Monocytogenes. Advances in Immunology, 2012, 113, 157-174.	2.2	31
23	Studies with Listeria Monocytogenes Lead the Way. Advances in Immunology, 2012, 113, 1-5.	2.2	6
24	Listeriolysin O Is Strongly Immunogenic Independently of Its Cytotoxic Activity. PLoS ONE, 2012, 7, e32310.	2.5	38
25	CD8 \hat{i} ±+ Dendritic Cells Are an Obligate Cellular Entry Point for Productive Infection by Listeria monocytogenes. Immunity, 2011, 35, 236-248.	14.3	162
26	Cellular and molecular events in the localization of diabetogenic T cells to islets of Langerhans. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1561-1566.	7.1	102
27	Entry of diabetogenic T cells into islets induces changes that lead to amplification of the cellular response. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1567-1572.	7.1	73
28	Cytokine-induced memory-like natural killer cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1915-1919.	7.1	660
29	Recombinant Listeria monocytogenes Expressing a Cell Wall-Associated Listeriolysin O Is Weakly Virulent but Immunogenic. Infection and Immunity, 2009, 77, 4371-4382.	2.2	8
30	The cellular niche of <i>Listeria monocytogenes</i> infection changes rapidly in the spleen. European Journal of Immunology, 2009, 39, 417-425.	2.9	64
31	A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature, 2008, 456, 259-263.	27.8	1,341
32	Granzymes Drive a Rapid Listeriolysin O-Induced T Cell Apoptosis. Journal of Immunology, 2008, 181, 1365-1374.	0.8	34
33	Intracellular Release of Granzyme B Drives a Rapid Listeriolysin Oâ€induced T Cell Apoptosis. FASEB Journal, 2008, 22, 860.7.	0.5	0
34	Impact of lymphocyte apoptosis on the innate immune stages of infection. Immunologic Research, 2007, 38, 333-341.	2.9	13
35	Blocking Monoclonal Antibodies Specific for Mouse IFN- $\hat{l}\pm/\hat{l}^2$ Receptor Subunit 1 (IFNAR-1) from Mice Immunized byln VivoHydrodynamic Transfection. Journal of Interferon and Cytokine Research, 2006, 26, 804-819.	1.2	222
36	Lymphocyte apoptosis as an immune subversion strategy of microbial pathogens. Trends in Immunology, 2006, 27, 497-503.	6.8	44

#	Article	IF	CITATIONS
37	Lymphocytes are detrimental during the early innate immune response against <i>Listeria monocytogenes </i> . Journal of Experimental Medicine, 2006, 203, 933-940.	8.5	123
38	Listeriolysin O from <i>Listeria monocytogenes</i> ls a Lymphocyte Apoptogenic Molecule. Journal of Immunology, 2004, 172, 4866-4874.	0.8	132
39	Type I Interferon Sensitizes Lymphocytes to Apoptosis and Reduces Resistance to Listeria Infection. Journal of Experimental Medicine, 2004, 200, 535-540.	8.5	355
40	Distinct recognition by two subsets of T cells of an MHC class II-peptide complex. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8844-8849.	7.1	57