Maria Thom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1298726/publications.pdf

Version: 2024-02-01

38742 31849 11,370 152 50 101 citations h-index g-index papers 155 155 155 10878 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The clinicopathologic spectrum of focal cortical dysplasias: A consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission1. Epilepsia, 2011, 52, 158-174.	5.1	1,454
2	The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain, 2020, 143, 3104-3120.	7.6	880
3	International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the <scp>ILAE</scp> Commission on Diagnostic Methods. Epilepsia, 2013, 54, 1315-1329.	5.1	816
4	Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery. New England Journal of Medicine, 2017, 377, 1648-1656.	27.0	621
5	Review: Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathology and Applied Neurobiology, 2014, 40, 520-543.	3.2	424
6	Ammon's Horn Sclerosis: A Maldevelopmental Disorder Associated with Temporal Lobe Epilepsy. Brain Pathology, 2002, 12, 199-211.	4.1	313
7	Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology. Brain, 2011, 134, 2982-3010.	7.6	237
8	Hippocampal sclerosis—Origins and imaging. Epilepsia, 2012, 53, 19-33.	5.1	215
9	Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections. Brain, 2016, 139, 2441-2455.	7.6	193
10	Seizure outcome and use of antiepileptic drugs after epilepsy surgery according to histopathological diagnosis: a retrospective multicentre cohort study. Lancet Neurology, The, 2020, 19, 748-757.	10.2	177
11	Longâ€Term Epilepsyâ€Associated Tumors. Brain Pathology, 2012, 22, 350-379.	4.1	176
12	Temporal Lobe Sclerosis Associated With Hippocampal Sclerosis in Temporal Lobe Epilepsy: Neuropathological Features. Journal of Neuropathology and Experimental Neurology, 2009, 68, 928-938.	1.7	170
13	P-glycoprotein expression and function in patients with temporal lobe epilepsy: a case-control study. Lancet Neurology, The, 2013, 12, 777-785.	10.2	155
14	Reliability of patterns of hippocampal sclerosis as predictors of postsurgical outcome. Epilepsia, 2010, 51, 1801-1808.	5.1	146
15	Mesial temporal lobe epilepsy: How do we improve surgical outcome?. Annals of Neurology, 2010, 68, 424-434.	5.3	145
16	Germline and somatic FGFR1 abnormalities in dysembryoplastic neuroepithelial tumors. Acta Neuropathologica, 2016, 131, 847-863.	7.7	143
17	Quantitative post-mortem study of the hippocampus in chronic epilepsy: seizures do not inevitably cause neuronal loss. Brain, 2005, 128, 1344-1357.	7.6	132
18	<scp>BRAF V600E</scp> Mutation Is Associated with <scp>mTOR</scp> Signaling Activation in Glioneuronal Tumors. Brain Pathology, 2014, 24, 52-66.	4.1	129

#	Article	IF	CITATIONS
19	Neurofibrillary tangle pathology and Braak staging in chronic epilepsy in relation to traumatic brain injury and hippocampal sclerosis: a post-mortem study. Brain, 2011, 134, 2969-2981.	7.6	128
20	Cytoarchitectural Abnormalities in Hippocampal Sclerosis. Journal of Neuropathology and Experimental Neurology, 2002, 61, 510-519.	1.7	127
21	One Hundred and One Dysembryoplastic Neuroepithelial Tumors: An Adult Epilepsy Series With Immunohistochemical, Molecular Genetic, and Clinical Correlations and a Review of the Literature. Journal of Neuropathology and Experimental Neurology, 2011, 70, 859-878.	1.7	125
22	Malformations of cortical development and epilepsies: neuropathological findings with emphasis on focal cortical dysplasia. Epileptic Disorders, 2009, 11, 181-193.	1.3	120
23	Focal cortical dysplasia type II: biological features and clinical perspectives. Lancet Neurology, The, 2009, 8, 830-843.	10.2	119
24	Neuropathology of the blood–brain barrier and pharmaco-resistance in human epilepsy. Brain, 2012, 135, 3115-3133.	7.6	117
25	Low-grade epilepsy-associated neuroepithelial tumours — the 2016 WHO classification. Nature Reviews Neurology, 2016, 12, 732-740.	10.1	113
26	International recommendation for a comprehensive neuropathologic workup of epilepsy surgery brain tissue: A consensus Task Force report from the <scp>ILAE</scp> Commission on Diagnostic Methods. Epilepsia, 2016, 57, 348-358.	5.1	110
27	Microdysgenesis in temporal lobe epilepsy: A quantitative and immunohistochemical study of white matter neurones. Brain, 2001, 124, 2299-2309.	7.6	106
28	Evidence for mTOR pathway activation in a spectrum of epilepsy-associated pathologies. Acta Neuropathologica Communications, 2014, 2, 71.	5.2	98
29	Neurologic phenotypes associated with <i>COL4A1</i> / <i>2</i> mutations. Neurology, 2018, 91, e2078-e2088.	1.1	97
30	Structural imaging biomarkers of sudden unexpected death in epilepsy. Brain, 2015, 138, 2907-2919.	7.6	95
31	The <scp>ILAE</scp> consensus classification of focal cortical dysplasia: An update proposed by an ad hoc task force of the <scp>ILAE</scp> diagnostic methods commission. Epilepsia, 2022, 63, 1899-1919.	5.1	88
32	Sudden and unexpected death in epilepsy (SUDEP): evidence of acute neuronal injury using HSP-70 and c-Jun immunohistochemistry. Neuropathology and Applied Neurobiology, 2003, 29, 132-143.	3.2	85
33	Review: Neurodegenerative processes in temporal lobe epilepsy with hippocampal sclerosis: Clinical, pathological and neuroimaging evidence. Neuropathology and Applied Neurobiology, 2018, 44, 70-90.	3.2	85
34	Microvascular injury and hypoxic damage: emerging neuropathological signatures in COVID-19. Acta Neuropathologica, 2020, 140, 397-400.	7.7	85
35	Isomorphic diffuse glioma is a morphologically and molecularly distinct tumour entity with recurrent gene fusions of MYBL1 or MYB and a benign disease course. Acta Neuropathologica, 2020, 139, 193-209.	7.7	83
36	The ventrolateral medulla and medullary raphe in sudden unexpected death in epilepsy. Brain, 2018, 141, 1719-1733.	7.6	80

#	Article	IF	Citations
37	Patterns of cerebellar atrophy in patients with chronic epilepsy: a quantitative neuropathological study. Epilepsy Research, 2000, 41, 63-73.	1.6	77
38	Cell Proliferation and Granule Cell Dispersion in Human Hippocampal Sclerosis. Journal of Neuropathology and Experimental Neurology, 2005, 64, 194-201.	1.7	77
39	Hippocampal Sclerosis: Progress Since Sommer. Brain Pathology, 2009, 19, 565-572.	4.1	73
40	Early Progenitor Cell Marker Expression Distinguishes Type II From Type I Focal Cortical Dysplasias. Journal of Neuropathology and Experimental Neurology, 2010, 69, 850-863.	1.7	72
41	Audit of practice in sudden unexpected death in epilepsy (<scp>SUDEP</scp>) post mortems and neuropathological findings. Neuropathology and Applied Neurobiology, 2016, 42, 463-476.	3.2	68
42	The lifelong course of chronic epilepsy: the Chalfont experience. Brain, 2013, 136, 3187-3199.	7.6	64
43	Good interobserver and intraobserver agreement in the evaluation of the new ILAE classification of focal cortical dysplasias. Epilepsia, 2012, 53, 1341-1348.	5.1	63
44	Correlation of quantitative MRI and neuropathology in epilepsy surgical resection specimens—T2 correlates with neuronal tissue in gray matter. NeuroImage, 2007, 37, 48-55.	4.2	60
45	Pathological Tau Tangles Localize to Focal Cortical Dysplasia in Older Patients. Epilepsia, 2007, 48, 1447-1454.	5.1	60
46	Increased NKCC1 expression in refractory human epilepsy. Epilepsy Research, 2007, 74, 220-227.	1.6	59
47	Investigation of widespread neocortical pathology associated with hippocampal sclerosis in epilepsy: A postmortem study. Epilepsia, 2011, 52, 10-21.	5.1	59
48	Expression patterns of glial fibrillary acidic protein (GFAP)â€delta in epilepsyâ€associated lesional pathologies. Neuropathology and Applied Neurobiology, 2009, 35, 394-405.	3.2	57
49	Comprehensive molecular characterisation of epilepsy-associated glioneuronal tumours. Acta Neuropathologica, 2018, 135, 115-129.	7.7	57
50	Central benzodiazepine receptor autoradiography in hippocampal sclerosis. British Journal of Pharmacology, 1997, 122, 358-364.	5.4	55
51	Multinodular and vacuolating neuronal tumors in epilepsy: dysplasia or neoplasia?. Brain Pathology, 2018, 28, 155-171.	4.1	54
52	Toward a better definition of focal cortical dysplasia: An iterative histopathological and genetic agreement trial. Epilepsia, 2021, 62, 1416-1428.	5.1	54
53	Quantitative Neuropathology of the Entorhinal Cortex Region in Patients with Hippocampal Sclerosis and Temporal Lobe Epilepsy. Epilepsia, 2005, 46, 23-30.	5.1	53
54	Bilateral reorganization of the dentate gyrus in hippocampal sclerosis. Neurology, 2009, 73, 1033-1040.	1.1	52

#	Article	IF	CITATIONS
55	Histological and MRI markers of white matter damage in focal epilepsy. Epilepsy Research, 2018, 140, 29-38.	1.6	52
56	Variability of sclerosis along the longitudinal hippocampal axis in epilepsy: A post mortem study. Epilepsy Research, 2012, 102, 45-59.	1.6	50
57	Cajal-Retzius cells, inhibitory interneuronal populations and neuropeptide Y expression in focal cortical dysplasia and microdysgenesis. Acta Neuropathologica, 2003, 105, 561-569.	7.7	49
58	Cortical neuronal densities and lamination in focal cortical dysplasia. Acta Neuropathologica, 2005, 110, 383-392.	7.7	49
59	The application of cortical layer markers in the evaluation of cortical dysplasias in epilepsy. Acta Neuropathologica, 2010, 120, 517-528.	7.7	47
60	Transcriptomic and genetic analyses reveal potential causal drivers for intractable partial epilepsy. Brain, 2019, 142, 1616-1630.	7.6	47
61	A quantitative study of white matter hypomyelination and oligodendroglial maturation in focal cortical dysplasia type <scp>II</scp> . Epilepsia, 2013, 54, 898-908.	5.1	46
62	Review: Challenges in the histopathological classification of ganglioglioma and DNT: microscopic agreement studies and a preliminary genotypeâ€phenotype analysis. Neuropathology and Applied Neurobiology, 2019, 45, 95-107.	3.2	46
63	Microdysgenesis with abnormal cortical myelinated fibres in temporal lobe epilepsy: a histopathological study with calbindin D-28-K immunohistochemistry. Neuropathology and Applied Neurobiology, 2000, 26, 251-257.	3.2	45
64	Distribution of Cortical Interneurons in Grey Matter Heterotopia in Patients with Epilepsy. Epilepsia, 2004, 45, 916-923.	5.1	45
65	Balloon cells in human cortical dysplasia and tuberous sclerosis: isolation of a pathological progenitor-like cell. Acta Neuropathologica, 2010, 120, 85-96.	7.7	45
66	Recent advances in the neuropathology of focal lesions in epilepsy. Expert Review of Neurotherapeutics, 2004, 4, 973-984.	2.8	44
67	Spontaneous intralesional haemorrhage in dysembryoplastic neuroepithelial tumours: a series of five cases. Journal of Neurology, Neurosurgery and Psychiatry, 1999, 67, 97-101.	1.9	38
68	Review: The past, present and future challenges in epilepsyâ€related and sudden deaths and biobanking. Neuropathology and Applied Neurobiology, 2018, 44, 32-55.	3.2	38
69	Landscape of chromosomal copy number aberrations in gangliogliomas and dysembryoplastic neuroepithelial tumours. Neuropathology and Applied Neurobiology, 2015, 41, 743-755.	3.2	37
70	Combined <i>Ex Vivo</i> 9.4 <scp>T MRI</scp> and Quantitative Histopathological Study in Normal and Pathological Neocortical Resections in Focal Epilepsy. Brain Pathology, 2016, 26, 319-333.	4.1	37
71	Regional thalamic neuropathology in patients with hippocampal sclerosis and epilepsy: A postmortem study. Epilepsia, 2013, 54, 2125-2133.	5.1	36
72	Amygdala sclerosis in sudden and unexpected death in epilepsy. Epilepsy Research, 1999, 37, 53-62.	1.6	33

#	Article	IF	Citations
73	Neuropathology of SUDEP. Neurology, 2017, 88, 551-561.	1.1	33
74	Coding and non-coding transcriptome of mesial temporal lobe epilepsy: Critical role of small non-coding RNAs. Neurobiology of Disease, 2020, 134, 104612.	4.4	33
75	Calbindin D28K expression in relation to granule cell dispersion, mossy fibre sprouting and memory impairment in hippocampal sclerosis: A surgical and post mortem series. Epilepsy Research, 2012, 98, 14-24.	1.6	31
76	Nestinâ€expressing cell types in the temporal lobe and hippocampus: Morphology, differentiation, and proliferative capacity. Glia, 2018, 66, 62-77.	4.9	31
77	Doublecortin expression in focal cortical dysplasia in epilepsy. Epilepsia, 2009, 50, 2619-2628.	5.1	30
78	Expression patterns of glial fibrillary acidic protein (GFAP)-delta in epilepsy-associated lesional pathologies. Neuropathology and Applied Neurobiology, 2009, 35, 394-405.	3.2	30
79	Mcm2 labelling of balloon cells in focal cortical dysplasia. Neuropathology and Applied Neurobiology, 2005, 31, 580-588.	3.2	29
80	Investigation of hypoxiaâ€inducible factorâ€1α in hippocampal sclerosis: A postmortem study. Epilepsia, 2012, 53, 1349-1359.	5.1	28
81	Correlating 3T MRI and histopathology in patients undergoing epilepsy surgery. Journal of Neuroscience Methods, 2012, 205, 182-189.	2.5	28
82	Doublecortin-expressing cell types in temporal lobe epilepsy. Acta Neuropathologica Communications, 2018, 6, 60.	5.2	28
83	Expression of neurodegenerative diseaseâ€related proteins and caspaseâ€3 in glioneuronal tumours. Neuropathology and Applied Neurobiology, 2015, 41, e1-e15.	3.2	27
84	Characterising subtypes of hippocampal sclerosis and reorganization: correlation with pre and postoperative memory deficit. Brain Pathology, 2018, 28, 143-154.	4.1	26
85	Hippocampal sclerosis with hypertrophy of end folium pyramidal cells. Acta Neuropathologica, 1999, 98, 107-110.	7.7	24
86	GABAB receptor autoradiography in hippocampal sclerosis associated with human temporal lobe epilepsy. British Journal of Pharmacology, 2001, 132, 475-480.	5 . 4	24
87	Reliable Registration of Preoperative MRI with Histopathology after Temporal Lobe Resections. Epilepsia, 2005, 46, 1646-1653.	5.1	24
88	A comparative study of the dentate gyrus in hippocampal sclerosis in epilepsy and dementia. Neuropathology and Applied Neurobiology, 2014, 40, 177-190.	3. 2	24
89	High-throughput, automated quantification of white matter neurons in mild malformation of cortical development in epilepsy. Acta Neuropathologica Communications, 2014, 2, 72.	5 . 2	24
90	Early lipofuscin accumulation in frontal lobe epilepsy. Annals of Neurology, 2016, 80, 882-895.	5. 3	24

#	Article	IF	Citations
91	Proteomics and Transcriptomics of the Hippocampus and Cortex in SUDEP and High-Risk SUDEP Patients. Neurology, 2021, 96, e2639-e2652.	1.1	24
92	Bilateral isolated hippocampal malformation in temporal lobe epilepsy. Neurology, 2002, 58, 1683-1686.	1.1	23
93	Big data in epilepsy: Clinical and research considerations. Report from the Epilepsy Big Data Task Force of the International League Against Epilepsy. Epilepsia, 2020, 61, 1869-1883.	5.1	23
94	Toward a refined genotype–phenotype classification scheme for the international consensus classification of Focal Cortical Dysplasia. Brain Pathology, 2021, 31, e12956.	4.1	22
95	A systemsâ€level analysis highlights microglial activation as a modifying factor in common epilepsies. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	22
96	A spatiotemporal study of gliosis in relation to depth electrode tracks in drugâ€resistant epilepsy. European Journal of Neuroscience, 2014, 39, 2151-2162.	2.6	21
97	MRI and pathology correlations in the medulla in sudden unexpected death in epilepsy (SUDEP): a postmortem study. Neuropathology and Applied Neurobiology, 2021, 47, 157-170.	3.2	20
98	Cardiac phenotype in <i>ATP1A3</i> -related syndromes. Neurology, 2020, 95, e2866-e2879.	1.1	19
99	Adenosine kinase and adenosine receptors A 1 R and A 2A R in temporal lobe epilepsy and hippocampal sclerosis and association with risk factors for SUDEP. Epilepsia, 2020, 61, 787-797.	5.1	18
100	Characterisation of medullary astrocytic populations in respiratory nuclei and alterations in sudden unexpected death in epilepsy. Epilepsy Research, 2019, 157, 106213.	1.6	17
101	Review: Neuropathology findings in autonomic brain regions in SUDEP and future research directions. Autonomic Neuroscience: Basic and Clinical, 2021, 235, 102862.	2.8	17
102	Balloon cells associated with granule cell dispersion in the dentate gyrus in hippocampal sclerosis. Acta Neuropathologica, 2008, 115, 697-700.	7.7	16
103	Temporal lobe epilepsy. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 107, 225-240.	1.8	16
104	Spatiotemporal dynamics of $\langle scp \rangle PDGFR \langle scp \rangle \hat{l}^2$ expression in pericytes and glial scar formation in penetrating brain injuries in adults. Neuropathology and Applied Neurobiology, 2019, 45, 609-627.	3.2	16
105	Granule Cell Dispersion in Human Temporal Lobe Epilepsy: Proteomics Investigation of Neurodevelopmental Migratory Pathways. Frontiers in Cellular Neuroscience, 2020, 14, 53.	3.7	16
106	Multisystem screening reveals <scp>SARSâ€CoV</scp> â€2 in neurons of the myenteric plexus and in megakaryocytes. Journal of Pathology, 2022, 257, 198-217.	4.5	16
107	Regional microglial populations in central autonomic brain regions in SUDEP. Epilepsia, 2021, 62, 1318-1328.	5.1	15
108	Hippocampal Malformations Do Not Necessarily Evolve into Hippocampal Sclerosis. Epilepsia, 2005, 46, 939-943.	5.1	14

#	Article	IF	CITATIONS
109	Neuropeptide depletion in the amygdala in sudden unexpected death in epilepsy: A postmortem study. Epilepsia, 2020, 61, 310-318.	5.1	14
110	Histological effects of fibrin glue and synthetic tissue glues on the spinal cord: are they safe to use?. British Journal of Neurosurgery, 2017, 31, 695-700.	0.8	13
111	Immunolabeling recovery in archival, post-mortem, human brain tissue using modified antigen retrieval and the catalyzed signal amplification system. Journal of Neuroscience Methods, 2010, 190, 49-56.	2.5	12
112	The impact of brainâ€derived neurotrophic factor Val66Met polymorphism on cognition and functional brain networks in patients with intractable partial epilepsy. CNS Neuroscience and Therapeutics, 2019, 25, 223-232.	3.9	12
113	OUP accepted manuscript. Brain, 2020, 143, e101.	7.6	12
114	An Investigation of the Expression of G1-Phase Cell Cycle Proteins in Focal Cortical Dysplasia Type IIB. Journal of Neuropathology and Experimental Neurology, 2007, 66, 1045-1055.	1.7	11
115	Diffuse cerebral gangliocytoma in an adult with lateâ€onset refractory epilepsy. Neuropathology and Applied Neurobiology, 2007, 33, 706-709.	3.2	11
116	Quantitative expression and localization of GABAB receptor protein subunits in hippocampi from patients with refractory temporal lobe epilepsy. Neuropharmacology, 2018, 136, 117-128.	4.1	11
117	Identification of Specific Circular RNA Expression Patterns and MicroRNA Interaction Networks in Mesial Temporal Lobe Epilepsy. Frontiers in Genetics, 2020, 11, 564301.	2.3	11
118	Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection. Journal of Biomedical Optics, $2017, 22, 1$.	2.6	11
119	Serotonin transporter in the temporal lobe, hippocampus and amygdala in <scp>SUDEP</scp> . Brain Pathology, 2022, 32, e13074.	4.1	10
120	Methodological aspects of 3D and automated 2D analyses of white matter neuronal density in temporal lobe epilepsy. Neuropathology and Applied Neurobiology, 2006, 32, 260-270.	3.2	9
121	Hippocampal morphometry in sudden and unexpected death in epilepsy. Neurology, 2019, 93, e804-e814.	1.1	9
122	Medullary tyrosine hydroxylase catecholaminergic neuronal populations in sudden unexpected death in epilepsy. Brain Pathology, 2021, 31, 133-143.	4.1	9
123	Detection of covert lesions in focal epilepsy using computational analysis of multimodal magnetic resonance imaging data. Epilepsia, 2021, 62, 807-816.	5.1	9
124	Interictal psychosis following temporal lobe surgery: dentate gyrus pathology. Psychological Medicine, 2014, 44, 3037-3049.	4.5	8
125	Multiphasic presentation of Rasmussen's encephalitis. Epileptic Disorders, 2015, 17, 315-320.	1.3	8
126	Cortical neuronal hypertrophy and <scp>mTOR</scp> pathway activation in <scp>CAN</scp> regions in <scp>SUDEP</scp> . Epilepsia, 2022, 63, 2427-2438.	5.1	8

#	Article	IF	CITATIONS
127	Intradural extramedullary spinal candida infection. Practical Neurology, 2015, 15, 400-404.	1.1	7
128	Neuropathology of epilepsy: epilepsy-related deaths and SUDEP. Diagnostic Histopathology, 2019, 25, 23-33.	0.4	7
129	A cautionary note in the interpretation of human papillomavirus <scp>E</scp> 6 immunohistochemistry in focal cortical dysplasia. Annals of Neurology, 2015, 77, 352-353.	5.3	5
130	MicroRNA519d and microRNA4758 can identify gangliogliomas from dysembryoplastic neuroepithelial tumours and astrocytomas. Oncotarget, 2018, 9, 28103-28115.	1.8	5
131	New perspectives in epilepsy neuropathology. Neuropathology and Applied Neurobiology, 2018, 44, 3-5.	3.2	4
132	Novel therapeutic targets in epilepsy: oxidative stress and iron metabolism. Neuropathology and Applied Neurobiology, 2020, 46, 519-521.	3.2	4
133	Progesterone receptors are expressed with higher frequency by optic nerve sheath meningiomas. , 2002, 21, 5-8.		4
134	Pathological Findings in Sudden and Unexpected Death in Epilepsy (SUDEP). Journal of Interventional Cardiac Electrophysiology, 2001, 5, 408-414.	1.0	3
135	Cerebrospinal fluid cannot be used to distinguish inflammatory myelitis from congestive myelopathy due to spinal dural arteriovenous fistula: case series. BMJ Neurology Open, 2019, 1, e000019.	1.6	3
136	Pathology-MRI Correlations in Diffuse Low-Grade Epilepsy Associated Tumors. Journal of Neuropathology and Experimental Neurology, 2017, 76, 1023-1033.	1.7	3
137	Safety of intracranial electroencephalography during functional magnetic resonance imaging in humans at 1.5 tesla using a head transmit RF coil: Histopathological and heat-shock immunohistochemistry observations. Neurolmage, 2022, 254, 119129.	4.2	3
138	SCN1A overexpression, associated with a genomic region marked by a risk variant for a common epilepsy, raises seizure susceptibility. Acta Neuropathologica, 2022, 144, 107-127.	7.7	3
139	Inhibitory interneurons in focal cortical dysplasia and microdysgenesis. Neuropathology and Applied Neurobiology, 2002, 28, 158-158.	3.2	2
140	Reelin and human nodular heterotopia. Epilepsia, 2011, 52, 650-652.	5.1	2
141	Progressive hemispheric atrophy in HIV: A Rasmussen'sâ€like variant of CD8 encephalitis?. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	2
142	Typical polyglucosan bodies are present in the sweat gland lumina in Lafora's disease. Acta Neuropathologica, 1996, 92, 102-103.	7.7	1
143	Response to Janigro et al Epilepsia, 2007, 48, 1219-1220.	5.1	1
144	Epilepsy Pathology. , 2014, , 136-141.		1

#	Article	IF	CITATIONS
145	In response to †Volume loss and altered neuronal composition in the brainstem reticular zone may not cause sudden unexpected death in epilepsy'. Neuropathology and Applied Neurobiology, 2021, 47, 173-175.	3.2	1
146	Tau Protein in Drug-Resistant Epilepsy and Cognitive Decline. Agents and Actions Supplements, 2021, , 149-184.	0.2	1
147	Polyglucosan bodies in medullary catecholaminergic neurons in SUDEP. Epilepsy and Behavior Reports, 2021, 15, 100430.	1.0	1
148	THINK OUTSIDE THE BOX, COLLAPSE THE BOX, AND TAKE A SHARP KNIFE TO IT!. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, e2.83-e2.	1.9	0
149	Focal Cortical Dysplasia. , 2015, , 881-886.		0
150	Reply to the letter of Susan Staugaitis. Brain Pathology, 2016, 26, 788-788.	4.1	0
151	Hippocampal Sclerosis as a Cause of Medication-Resistant Epilepsy. , 2020, , 87-99.		0
152	Glial regenerative cell types in the superficial cortex in cortical dysplasia subtypes. Epilepsy Research, 2021, 169, 106529.	1.6	0