Teresa Lambe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1298550/publications.pdf Version: 2024-02-01

TEDESALAMBE

#	Article	IF	CITATIONS
1	Manufacturing a chimpanzee adenovirusâ€vectored SARSâ€CoVâ€2 vaccine to meet global needs. Biotechnology and Bioengineering, 2022, 119, 48-58.	1.7	38
2	Reduced neutralisation of SARS-CoV-2 omicron B.1.1.529 variant by post-immunisation serum. Lancet, The, 2022, 399, 234-236.	6.3	318
3	SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell, 2022, 185, 467-484.e15.	13.5	788
4	Response to Letter to the Editor by Ish et al. entitled â€~COVID-19 vaccine equity—the need of the hour'. QJM - Monthly Journal of the Association of Physicians, 2022, , .	0.2	0
5	Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): a single-blind, randomised, phase 2, non-inferiority trial. Lancet, The, 2022, 399, 36-49.	6.3	161
6	Heterologous versus homologous COVID-19 booster vaccination in previous recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001): a phase 4, non-inferiority, single blind, randomised study. Lancet, The, 2022, 399, 521-529.	6.3	314
7	Detection and quantification of antibody to SARS CoV 2 receptor binding domain provides enhanced sensitivity, specificity and utility. Journal of Virological Methods, 2022, 302, 114475.	1.0	8
8	CMV-associated T cell and NK cell terminal differentiation does not affect immunogenicity of ChAdOx1 vaccination. JCI Insight, 2022, 7, .	2.3	6
9	Divergent trajectories of antiviral memory after SARS-CoV-2 infection. Nature Communications, 2022, 13, 1251.	5.8	20
10	The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 beta (B.1.351) and other variants of concern in preclinical studies. EBioMedicine, 2022, 77, 103902.	2.7	23
11	Durability of ChAdOx1 nCoV-19 vaccination in people living with HIV. JCI Insight, 2022, 7, .	2.3	26
12	Persistence of immunogenicity after seven COVID-19 vaccines given as third dose boosters following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK: Three month analyses of the COV-BOOST trial Journal of Infection, 2022, 84, 795-813.	1.7	43
13	Why do breakthrough COVID-19 infections occur in the vaccinated?. QJM - Monthly Journal of the Association of Physicians, 2022, 115, 67-68.	0.2	2
14	Potent cross-reactive antibodies following Omicron breakthrough in vaccinees. Cell, 2022, 185, 2116-2131.e18.	13.5	105
15	Viral vector vaccines. Current Opinion in Immunology, 2022, 77, 102210.	2.4	28
16	Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses. JCI Insight, 2022, 7, .	2.3	24
17	Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell, 2022, 185, 2422-2433.e13.	13.5	532
18	An exploratory analysis of the response to ChAdOx1 nCoV-19 (AZD1222) vaccine in males and females. EBioMedicine, 2022, 81, 104128.	2.7	8

#	Article	IF	CITATIONS
19	Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet, The, 2021, 397, 99-111.	6.3	3,887
20	Seroprevalence of anti–SARS-CoV-2 IgG antibodies in Kenyan blood donors. Science, 2021, 371, 79-82.	6.0	247
21	Phase 1/2 trial of SARS-CoV-2 vaccine ChAdOx1 nCoV-19 with a booster dose induces multifunctional antibody responses. Nature Medicine, 2021, 27, 279-288.	15.2	265
22	T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nature Medicine, 2021, 27, 270-278.	15.2	473
23	MAIT cell activation augments adenovirus vector vaccine immunogenicity. Science, 2021, 371, 521-526.	6.0	88
24	A booster dose enhances immunogenicity of the COVID-19 vaccine candidate ChAdOx1 nCoV-19 in aged mice. Med, 2021, 2, 243-262.e8.	2.2	62
25	Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet, The, 2021, 397, 881-891.	6.3	979
26	The Integration of Human and Veterinary Studies for Better Understanding and Management of Crimean-Congo Haemorrhagic Fever. Frontiers in Immunology, 2021, 12, 629636.	2.2	8
27	ChAdOx1-vectored Lassa fever vaccine elicits a robust cellular and humoral immune response and protects guinea pigs against lethal Lassa virus challenge. Npj Vaccines, 2021, 6, 32.	2.9	30
28	Native-like SARS-CoV-2 Spike Glycoprotein Expressed by ChAdOx1 nCoV-19/AZD1222 Vaccine. ACS Central Science, 2021, 7, 594-602.	5.3	118
29	T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses. Nature Communications, 2021, 12, 2055.	5.8	102
30	Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell, 2021, 184, 2348-2361.e6.	13.5	936
31	Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet, The, 2021, 397, 1351-1362.	6.3	540
32	Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell, 2021, 184, 2201-2211.e7.	13.5	442
33	Heterologous vaccination regimens with self-amplifying RNA and adenoviral COVID vaccines induce robust immune responses in mice. Nature Communications, 2021, 12, 2893.	5.8	104
34	ChAdOx1 nCoV-19 (AZD1222) vaccine candidate significantly reduces SARS-CoV-2 shedding in ferrets. Npj Vaccines, 2021, 6, 67.	2.9	47
35	Antibody evasion by the P.1 strain of SARS-CoV-2. Cell, 2021, 184, 2939-2954.e9.	13.5	519
36	Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. New England Journal of Medicine, 2021, 384, 1885-1898.	13.9	1,077

#	Article	IF	CITATIONS
37	Temporal trends of SARS-CoV-2 seroprevalence during the first wave of the COVID-19 epidemic in Kenya. Nature Communications, 2021, 12, 3966.	5.8	40
38	ChAdOx1 nCoV-19 protection against SARS-CoV-2 in rhesus macaque and ferret challenge models. Communications Biology, 2021, 4, 915.	2.0	15
39	Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Science Translational Medicine, 2021, 13, .	5.8	180
40	Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in HIV infection: a single-arm substudy of a phase 2/3 clinical trial. Lancet HIV,the, 2021, 8, e474-e485.	2.1	190
41	Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell, 2021, 184, 4220-4236.e13.	13.5	630
42	Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial. Lancet, The, 2021, 398, 856-869.	6.3	430
43	Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in people living with and without HIV in South Africa: an interim analysis of a randomised, double-blind, placebo-controlled, phase 1B/2A trial. Lancet HIV,the, 2021, 8, e568-e580.	2.1	124
44	Immunological and pathological outcomes of SARS-CoV-2 challenge following formalin-inactivated vaccine in ferrets and rhesus macaques. Science Advances, 2021, 7, eabg7996.	4.7	20
45	Identification of immune correlates of fatal outcomes in critically ill COVID-19 patients. PLoS Pathogens, 2021, 17, e1009804.	2.1	39
46	AZD1222/ChAdOx1 nCoV-19 vaccination induces a polyfunctional spike protein–specific T _H 1 response with a diverse TCR repertoire. Science Translational Medicine, 2021, 13, eabj7211.	5.8	80
47	Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nature Medicine, 2021, 27, 2032-2040.	15.2	900
48	Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002). Lancet, The, 2021, 398, 981-990.	6.3	214
49	Recombinant protein vaccines against SARS-CoV-2. Lancet Infectious Diseases, The, 2021, 21, 1337-1338.	4.6	6
50	ChAdOx1 nCoV-19 (AZD1222) protects Syrian hamsters against SARS-CoV-2 B.1.351 and B.1.1.7. Nature Communications, 2021, 12, 5868.	5.8	52
51	Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 lineages circulating in Brazil. Nature Communications, 2021, 12, 5861.	5.8	38
52	Respiratory and Intramuscular Immunization With ChAdOx2-NPM1-NA Induces Distinct Immune Responses in H1N1pdm09 Pre-Exposed Pigs. Frontiers in Immunology, 2021, 12, 763912.	2.2	5
53	Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. Lancet, The, 2021, 398, 2258-2276.	6.3	519
54	CD4+ T Follicular Helper Cells in Human Tonsils and Blood Are Clonally Convergent but Divergent from Non-Tfh CD4+ Cells. Cell Reports, 2020, 30, 137-152.e5.	2.9	74

#	Article	IF	CITATIONS
55	Modified Vaccinia Ankara–Vectored Vaccine Expressing Nucleoprotein and Matrix Protein 1 (M1) Activates Mucosal M1-Specific T-Cell Immunity and Tissue-Resident Memory T Cells in Human Nasopharynx-Associated Lymphoid Tissue. Journal of Infectious Diseases, 2020, 222, 807-819.	1.9	16
56	ChAdOx1ÂnCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature, 2020, 586, 578-582.	13.7	840
57	Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, The, 2020, 396, 467-478.	6.3	2,080
58	Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet, The, 2020, 396, 1979-1993.	6.3	1,196
59	Evaluation of the immunogenicity of prime-boost vaccination with the replication-deficient viral vectored COVID-19 vaccine candidate ChAdOx1 nCoV-19. Npj Vaccines, 2020, 5, 69.	2.9	121
60	Reduced Ebola vaccine responses in CMV+ young adults is associated with expansion of CD57+KLRG1+ T cells. Journal of Experimental Medicine, 2020, 217, .	4.2	31
61	A single dose of ChAdOx1 MERS provides protective immunity in rhesus macaques. Science Advances, 2020, 6, eaba8399.	4.7	89
62	The early landscape of coronavirus disease 2019 vaccine development in the UK and rest of the world. Immunology, 2020, 160, 223-232.	2.0	86
63	A Multi-Filovirus Vaccine Candidate: Co-Expression of Ebola, Sudan, and Marburg Antigens in a Single Vector. Vaccines, 2020, 8, 241.	2.1	12
64	Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infectious Diseases, The, 2020, 20, 816-826.	4.6	182
65	Vaccination with viral vectors expressing NP, M1 and chimeric hemagglutinin induces broad protection against influenza virus challenge in mice. Vaccine, 2019, 37, 5567-5577.	1.7	33
66	Vaccination With Viral Vectors Expressing Chimeric Hemagglutinin, NP and M1 Antigens Protects Ferrets Against Influenza Virus Challenge. Frontiers in Immunology, 2019, 10, 2005.	2.2	48
67	Humoral Immunogenicity and Efficacy of a Single Dose of ChAdOx1 MERS Vaccine Candidate in Dromedary Camels. Scientific Reports, 2019, 9, 16292.	1.6	72
68	A single-dose ChAdOx1-vectored vaccine provides complete protection against Nipah Bangladesh and Malaysia in Syrian golden hamsters. PLoS Neglected Tropical Diseases, 2019, 13, e0007462.	1.3	46
69	Vaccine platforms for the prevention of Lassa fever. Immunology Letters, 2019, 215, 1-11.	1.1	43
70	HLA-E: exploiting pathogen-host interactions for vaccine development. Clinical and Experimental Immunology, 2019, 196, 167-177.	1.1	28
71	Heterologous Two-Dose Vaccination with Simian Adenovirus and Poxvirus Vectors Elicits Long-Lasting Cellular Immunity to Influenza Virus A in Healthy Adults. EBioMedicine, 2018, 29, 146-154.	2.7	100
72	A naturally protective epitope of limited variability asÂan influenza vaccine target. Nature Communications, 2018, 9, 3859.	5.8	32

Teresa Lambe

#	Article	IF	CITATIONS
73	Clinical Advances in Viral-Vectored Influenza Vaccines. Vaccines, 2018, 6, 29.	2.1	35
74	The Threshold of Protection from Liver-Stage Malaria Relies on a Fine Balance between the Number of Infected Hepatocytes and Effector CD8+ T Cells Present in the Liver. Journal of Immunology, 2017, 198, 2006-2016.	0.4	17
75	A review of Phase I trials of Ebola virus vaccines: what can we learn from the race to develop novel vaccines?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160295.	1.8	33
76	ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice. Vaccine, 2017, 35, 3780-3788.	1.7	133
77	Chimpanzee adenoviral vectors as vaccines for outbreak pathogens. Human Vaccines and Immunotherapeutics, 2017, 13, 3020-3032.	1.4	67
78	Novel Bivalent Viral-Vectored Vaccines Induce Potent Humoral and Cellular Immune Responses Conferring Protection against Stringent Influenza A Virus Challenge. Journal of Immunology, 2017, 199, 1333-1341.	0.4	16
79	Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model. Npj Vaccines, 2017, 2, 28.	2.9	81
80	Detection of Vaccine-Induced Antibodies to Ebola Virus in Oral Fluid. Open Forum Infectious Diseases, 2016, 3, ofw031.	0.4	13
81	Activation of cross-reactive mucosal T and B cell responses in human nasopharynx-associated lymphoid tissue in vitro by Modified Vaccinia Ankara-vectored influenza vaccines. Vaccine, 2016, 34, 1688-1695.	1.7	13
82	Viral vectors as vaccine platforms: from immunogenicity to impact. Current Opinion in Immunology, 2016, 41, 47-54.	2.4	137
83	What Lies Beneath: Antibody Dependent Natural Killer Cell Activation by Antibodies to Internal Influenza Virus Proteins. EBioMedicine, 2016, 8, 277-290.	2.7	67
84	A Monovalent Chimpanzee Adenovirus Ebola Vaccine Boosted with MVA. New England Journal of Medicine, 2016, 374, 1635-1646.	13.9	295
85	Enhancing cellular immunogenicity of MVA-vectored vaccines by utilizing the F11L endogenous promoter. Vaccine, 2016, 34, 49-55.	1.7	13
86	Measuring Cellular Immunity to Influenza: Methods of Detection, Applications and Challenges. Vaccines, 2015, 3, 293-319.	2.1	26
87	Emergency Ebola response: a new approach to the rapid design and development of vaccines against emerging diseases. Lancet Infectious Diseases, The, 2015, 15, 356-359.	4.6	32
88	Clinical Assessment of a Novel Recombinant Simian Adenovirus ChAdOx1 as a Vectored Vaccine Expressing Conserved Influenza A Antigens. Molecular Therapy, 2014, 22, 668-674.	3.7	165
89	Improved adjuvanting of seasonal influenza vaccines: Preclinical studies of <scp>MVAâ€NP+M</scp> 1 coadministration with inactivated influenza vaccine. European Journal of Immunology, 2013, 43, 1940-1952.	1.6	43
90	Immunity Against Heterosubtypic Influenza Virus Induced By Adenovirus And MVA Expressing Nucleoprotein And Matrix Protein-1. Scientific Reports, 2013, 3, 1443.	1.6	67

#	Article	IF	CITATIONS
91	DOCK8 is critical for the survival and function of NKT cells. Blood, 2013, 122, 2052-2061.	0.6	68
92	Preliminary Assessment of the Efficacy of a T-Cell–Based Influenza Vaccine, MVA-NP+M1, in Humans. Clinical Infectious Diseases, 2012, 55, 19-25.	2.9	224
93	T-Cell Responses in Children to Internal Influenza Antigens, 1 Year After Immunization With Pandemic H1N1 Influenza Vaccine, and Response to Revaccination With Seasonal Trivalent–inactivated Influenza Vaccine. Pediatric Infectious Disease Journal, 2012, 31, e86-e91.	1.1	23
94	Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens. Nature Biotechnology, 2012, 30, 883-888.	9.4	189
95	Expression and Cellular Immunogenicity of a Transgenic Antigen Driven by Endogenous Poxviral Early Promoters at Their Authentic Loci in MVA. PLoS ONE, 2012, 7, e40167.	1.1	22
96	A T Cell-Inducing Influenza Vaccine for the Elderly: Safety and Immunogenicity of MVA-NP+M1 in Adults Aged over 50 Years. PLoS ONE, 2012, 7, e48322.	1.1	107
97	Novel Viral Vectored Vaccines for the Prevention of Influenza. Molecular Medicine, 2012, 18, 1153-1160.	1.9	24
98	DOCK8 is essential for Tâ€cell survival and the maintenance of CD8 ⁺ Tâ€cell memory. European Journal of Immunology, 2011, 41, 3423-3435.	1.6	105
99	DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. Journal of Experimental Medicine, 2011, 208, 2305-2320.	4.2	175
100	Potent CD8+ T-Cell Immunogenicity in Humans of a Novel Heterosubtypic Influenza A Vaccine, MVA-NP+M1. Clinical Infectious Diseases, 2011, 52, 1-7.	2.9	424
101	The Essential Role of DOCK8 in Humoral Immunity. Disease Markers, 2010, 29, 141-150.	0.6	24
102	The essential role of DOCK8 in humoral immunity. Disease Markers, 2010, 29, 141-50.	0.6	12
103	Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection. Nature Immunology, 2009, 10, 831-839.	7.0	108
104	Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nature Immunology, 2009, 10, 1283-1291.	7.0	236
105	Identification of a Steap3 endosomal targeting motif essential for normal iron metabolism. Blood, 2009, 113, 1805-1808.	0.6	75
106	Vitiligo pathogenesis: autoimmune disease, genetic defect, excessive reactive oxygen species, calcium imbalance, or what else?. Experimental Dermatology, 2008, 17, 139-140.	1.4	148
107	Commentary 7. Experimental Dermatology, 2008, 17, 157-158.	1.4	0
108	Immune privilege or privileged immunity?. Mucosal Immunology, 2008, 1, 372-381.	2.7	111

#	Article	IF	CITATIONS
109	Limited Peripheral T Cell Anergy Predisposes to Retinal Autoimmunity. Journal of Immunology, 2007, 178, 4276-4283.	0.4	54
110	MyD88â€dependent autoimmune disease in Lynâ€deficient mice. European Journal of Immunology, 2007, 37, 2734-2743.	1.6	54
111	DNA repair is limiting for haematopoietic stem cells during ageing. Nature, 2007, 447, 686-690.	13.7	475
112	B-cell Tolerance. Transplantation, 2006, 81, 308-315.	0.5	23
113	CITED1 homozygous null mice display aberrant pubertal mammary ductal morphogenesis. Oncogene, 2006, 25, 1532-1542.	2.6	46
114	Differential expression of connexin 43 in mouse mammary cells. Cell Biology International, 2006, 30, 472-479.	1.4	10
115	Spontaneous B cell hyperactivity in autoimmune-prone MRL mice. International Immunology, 2006, 18, 1127-1137.	1.8	24
116	CD4 T Cell-Dependent Autoimmunity against a Melanocyte Neoantigen Induces Spontaneous Vitiligo and Depends upon Fas-Fas Ligand Interactions. Journal of Immunology, 2006, 177, 3055-3062.	0.4	74
117	A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature, 2005, 435, 452-458.	13.7	777
118	Hyper IgE in New Zealand black mice due to a dominant-negative CD23 mutation. Immunogenetics, 2004, 56, 564-571.	1.2	31
119	High Glucose-altered Gene Expression in Mesangial Cells. Journal of Biological Chemistry, 2002, 277, 9707-9712.	1.6	88
120	Cellular and developmental aspects of androgenetic alopecia. Experimental Dermatology, 1998, 7, 235-248.	1.4	117
121	Efficacy of ChAdOx1 nCoV-19 (AZD1222) Vaccine Against SARS-CoV-2 VOC 202012/01 (B.1.1.7). SSRN Electronic Journal, 0, , .	0.4	36
122	Single Dose Administration, And The Influence Of The Timing Of The Booster Dose On Immunogenicity and Efficacy Of ChAdOx1 nCoV-19 (AZD1222) Vaccine. SSRN Electronic Journal, 0, , .	0.4	10
123	Reduced Neutralization of SARS-CoV-2 B.1.1.7 Variant from Naturally Acquired and Vaccine Induced Antibody Immunity. SSRN Electronic Journal, 0, , .	0.4	2