Nicholas V Hud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1298422/publications.pdf

Version: 2024-02-01

144 papers 9,371 citations

53 h-index 92 g-index

164 all docs

164 docs citations

164 times ranked 8051 citing authors

#	Article	IF	CITATIONS
1	DNA-Templated Ag Nanocluster Formation. Journal of the American Chemical Society, 2004, 126, 5207-5212.	13.7	1,008
2	The Selectivity for K+versus Na+in DNA Quadruplexes Is Dominated by Relative Free Energies of Hydration: A Thermodynamic Analysis by1H NMRâ€. Biochemistry, 1996, 35, 15383-15390.	2.5	315
3	Cryoelectron microscopy of phage DNA condensates in vitreous ice: The fine structure of DNA toroids. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14925-14930.	7.1	258
4	Esterâ€Mediated Amide Bond Formation Driven by Wet–Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth. Angewandte Chemie - International Edition, 2015, 54, 9871-9875.	13.8	246
5	History of the ribosome and the origin of translation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15396-15401.	7.1	224
6	The effect of sodium, potassium and ammonium ions on the conformation of the dimeric quadruplex formed by the Oxytricha nova telomere repeat oligonucleotide d(G4T4G4). Nucleic Acids Research, 1999, 27, 3018-3028.	14.5	213
7	Localization of ammonium ions in the minor groove of DNA duplexes in solution and the origin of DNA A-tract bending 1 1Edited by I. Tinoco. Journal of Molecular Biology, 1999, 286, 651-660.	4.2	205
8	Controlling the size of nanoscale toroidal DNA condensates with static curvature and ionic strength. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9296-9301.	7.1	201
9	Toroidal DNA Condensates: Unraveling the Fine Structure and the Role of Nucleation in Determining Size. Annual Review of Biophysics and Biomolecular Structure, 2005, 34, 295-318.	18.3	197
10	DNA–cation interactions: the major and minor grooves are flexible ionophores. Current Opinion in Structural Biology, 2001, 11, 293-301.	5.7	193
11	DNA and RNA in Anhydrous Media: Duplex, Triplex, and Gâ€Quadruplex Secondary Structures in a Deep Eutectic Solvent. Angewandte Chemie - International Edition, 2010, 49, 6310-6314.	13.8	190
12	Guanine, Adenine, and Hypoxanthine Production in UVâ€Irradiated Formamide Solutions: Relaxation of the Requirements for Prebiotic Purine Nucleobase Formation. ChemBioChem, 2010, 11, 1240-1243.	2.6	178
13	Cations in charge: magnesium ions in RNA folding and catalysis. Current Opinion in Structural Biology, 2012, 22, 262-272.	5.7	176
14	The Origin of RNA and "My Grandfather's Axe― Chemistry and Biology, 2013, 20, 466-474.	6.0	172
15	Evolution of the ribosome at atomic resolution. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10251-10256.	7.1	172
16	Binding sites and dynamics of ammonium ions in a telomere repeat DNA quadruplex 1 1Edited by I. Tinoco. Journal of Molecular Biology, 1999, 285, 233-243.	4.2	156
17	Efficient Self-Assembly in Water of Long Noncovalent Polymers by Nucleobase Analogues. Journal of the American Chemical Society, 2013, 135, 2447-2450.	13.7	143
18	A unified model for the origin of DNA sequence-directed curvature. Biopolymers, 2003, 69, 144-158.	2.4	138

#	Article	IF	Citations
19	Secondary Structures of rRNAs from All Three Domains of Life. PLoS ONE, 2014, 9, e88222.	2.5	122
20	Localization of Divalent Metal lons in the Minor Groove of DNA A-Tracts. Journal of the American Chemical Society, 1997, 119, 5756-5757.	13.7	121
21	Spontaneous formation and base pairing of plausible prebiotic nucleotides in water. Nature Communications, 2016, 7, 11328.	12.8	112
22	Complete disproportionation of duplex poly(dT)middle dotpoly(dA) into triplex poly(dT)middle dotpoly(dA)middle dotpoly(dT) and poly(dA) by coralyne. Nucleic Acids Research, 2002, 30, 983-992.	14.5	108
23	Darwin's Warm Little Pond: A Oneâ€Pot Reaction for Prebiotic Phosphorylation and the Mobilization of Phosphate from Minerals in a Ureaâ€Based Solvent. Angewandte Chemie - International Edition, 2016, 55, 13249-13253.	13.8	105
24	Assembly of an Antiparallel Homo-Adenine DNA Duplex by Small-Molecule Binding. Journal of the American Chemical Society, 2004, 126, 8644-8645.	13.7	103
25	Controlling nucleic acid secondary structure by intercalation: effects of DNA strand length on coralyne-driven duplex disproportionation. Nucleic Acids Research, 2003, 31, 4608-4615.	14.5	101
26	Tip-radius-induced artifacts in AFM images of protamine-complexed DNA fibers. Ultramicroscopy, 1992, 42-44, 1095-1100.	1.9	100
27	Ester Formation and Hydrolysis during Wet–Dry Cycles: Generation of Far-from-Equilibrium Polymers in a Model Prebiotic Reaction. Macromolecules, 2014, 47, 1334-1343.	4.8	94
28	Ammonium Ion as an NMR Probe for Monovalent Cation Coordination Sites of DNA Quadruplexes. Journal of the American Chemical Society, 1998, 120, 6403-6404.	13.7	93
29	Formation of Native-like Mammalian Sperm Cell Chromatin with Folded Bull Protamine. Journal of Biological Chemistry, 2004, 279, 20088-20095.	3.4	92
30	Collision cross section calibrants for negative ion mode traveling wave ion mobility-mass spectrometry. Analyst, The, 2015, 140, 6853-6861.	3.5	86
31	Molecular recognition of poly(A) by small ligands: an alternative method of analysis reveals nanomolar, cooperative and shape-selective binding. Nucleic Acids Research, 2009, 37, 611-621.	14.5	83
32	Spontaneous Prebiotic Formation of a \hat{l}^2 -Ribofuranoside That Self-Assembles with a Complementary Heterocycle. Journal of the American Chemical Society, 2014, 136, 5640-5646.	13.7	82
33	Primitive Genetic Polymers. Cold Spring Harbor Perspectives in Biology, 2010, 2, a002196-a002196.	5.5	81
34	Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16338-16346.	7.1	81
35	Quantum-Mechanical Analysis of the Energetic Contributions to π Stacking in Nucleic Acids versus Rise, Twist, and Slide. Journal of the American Chemical Society, 2013, 135, 1306-1316.	13.7	80
36	Abiotic synthesis of RNA in water: a common goal of prebiotic chemistry and bottom-up synthetic biology. Current Opinion in Chemical Biology, 2014, 22, 146-157.	6.1	80

#	Article	IF	Citations
37	Human Telomere Sequence DNA in Water-Free and High-Viscosity Solvents: G-Quadruplex Folding Governed by Kramers Rate Theory. Journal of the American Chemical Society, 2012, 134, 15324-15330.	13.7	79
38	RNA Folding and Catalysis Mediated by Iron (II). PLoS ONE, 2012, 7, e38024.	2.5	79
39	Secondary structure and domain architecture of the 23S and 5S rRNAs. Nucleic Acids Research, 2013, 41, 7522-7535.	14.5	78
40	Nucleation of DNA Condensation by Static Loops:Â Formation of DNA Toroids with Reduced Dimensions. Journal of the American Chemical Society, 2000, 122, 4833-4834.	13.7	76
41	Formation of a \hat{I}^2 -Pyrimidine Nucleoside by a Free Pyrimidine Base and Ribose in a Plausible Prebiotic Reaction. Journal of the American Chemical Society, 2007, 129, 9556-9557.	13.7	73
42	The Ribosome Challenge to the RNA World. Journal of Molecular Evolution, 2015, 80, 143-161.	1.8	73
43	Time Study of DNA Condensate Morphology: Implications Regarding the Nucleation, Growth, and Equilibrium Populations of Toroids and Rodsâ€. Biochemistry, 2006, 45, 8174-8183.	2.5	71
44	Glyoxylate as a Backbone Linkage for a Prebiotic Ancestor of RNA. Origins of Life and Evolution of Biospheres, 2006, 36, 39-63.	1.9	69
45	RNA with iron(II) as a cofactor catalyses electron transfer. Nature Chemistry, 2013, 5, 525-528.	13.6	68
46	A viscous solvent enables information transfer from gene-length nucleic acids in a model prebiotic replication cycle. Nature Chemistry, 2017, 9, 318-324.	13.6	68
47	Folding and Imaging of DNA Nanostructures in Anhydrous and Hydrated Deepâ€Eutectic Solvents. Angewandte Chemie - International Edition, 2015, 54, 6765-6769.	13.8	65
48	The Solution Structure of d(G4T4G3)2: a Bimolecular G-quadruplex with a Novel Fold. Journal of Molecular Biology, 2002, 320, 911-924.	4.2	62
49	Spontaneous Symmetry Breaking in the Formation of Supramolecular Polymers: Implications for the Origin of Biological Homochirality. Angewandte Chemie - International Edition, 2019, 58, 1453-1457.	13.8	62
50	Localization of 23Na+in a DNA Quadruplex by High-Field Solid-State NMR. Journal of the American Chemical Society, 2000, 122, 11423-11429.	13.7	61
51	Mutually stabilizing interactions between proto-peptides and RNA. Nature Communications, 2020, 11, 3137.	12.8	61
52	Evidence That Both Kinetic and Thermodynamic Factors Govern DNA Toroid Dimensions: Effects of Magnesium(II) on DNA Condensation by Hexammine Cobalt(III)â€. Biochemistry, 2004, 43, 5380-5387.	2.5	56
53	Universal Sequence Replication, Reversible Polymerization and Early Functional Biopolymers: A Model for the Initiation of Prebiotic Sequence Evolution. PLoS ONE, 2012, 7, e34166.	2.5	56
54	Intercalation-Mediated Synthesis and Replication: A New Approach to the Origin of Life. Journal of Theoretical Biology, 2000, 205, 543-562.	1.7	55

#	Article	IF	CITATIONS
55	Intercalation as a means to suppress cyclization and promote polymerization of base-pairing oligonucleotides in a prebiotic world. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5288-5293.	7.1	55
56	B-DNA structure is intrinsically polymorphic: even at the level of base pair positions. Nucleic Acids Research, 2012, 40, 3714-3722.	14.5	53
57	Surveying the sequence diversity of model prebiotic peptides by mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7652-E7659.	7.1	51
58	Characterization of Divalent Cation Localization in the Minor Groove of the AnTnand TnAnDNA Sequence Elements by1H NMR Spectroscopy and Manganese(II)â€. Biochemistry, 2002, 41, 9900-9910.	2.5	49
59	NMR evaluation of ammonium ion movement within a unimolecular G-quadruplex in solution. Nucleic Acids Research, 2007, 35, 2554-2563.	14.5	49
60	Was a Pyrimidineâ€Pyrimidine Base Pair the Ancestor of Watsonâ€Crick Base Pairs? Insights from a Systematic Approach to the Origin of RNA. Israel Journal of Chemistry, 2015, 55, 891-905.	2.3	49
61	Multiple prebiotic metals mediate translation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12164-12169.	7.1	48
62	Prebiotic Syntheses of Noncanonical Nucleosides and Nucleotides. Chemical Reviews, 2020, 120, 4806-4830.	47.7	47
63	Enzymatic Behavior by Intercalating Molecules in a Template-Directed Ligation Reaction. Angewandte Chemie - International Edition, 2004, 43, 2004-2008.	13.8	45
64	Molecular paleontology: a biochemical model of the ancestral ribosome. Nucleic Acids Research, 2013, 41, 3373-3385.	14.5	45
65	Ethidium and Proflavine Binding to a 2â€~,5â€~-Linked RNA Duplex. Journal of the American Chemical Society, 2006, 128, 15380-15381.	13.7	44
66	MD and NMR Analyses of Choline and TMA Binding to Duplex DNA: On the Origins of Aberrant Sequence-Dependent Stability by Alkyl Cations in Aqueous and Water-Free Solvents. Journal of the American Chemical Society, 2014, 136, 3075-3086.	13.7	44
67	Folding, Assembly, and Persistence: The Essential Nature and Origins of Biopolymers. Journal of Molecular Evolution, 2018, 86, 598-610.	1.8	44
68	Harnessing DNA intercalation. Trends in Biotechnology, 2007, 25, 433-436.	9.3	43
69	RNA–DNA Chimeras in the Context of an RNA World Transition to an RNA/DNA World. Angewandte Chemie - International Edition, 2016, 55, 13204-13209.	13.8	43
70	RNA–Magnesium–Protein Interactions in Large Ribosomal Subunit. Journal of Physical Chemistry B, 2012, 116, 8113-8120.	2.6	42
71	Addressing the Problems of Base Pairing and Strand Cyclization in Template-Directed Synthesis. Chemistry and Biodiversity, 2007, 4, 768-783.	2.1	41
72	Ultra-sensitive pH control of supramolecular polymers and hydrogels: pK _a matching of biomimetic monomers. Chemical Science, 2014, 5, 4681-4686.	7.4	41

#	Article	IF	Citations
73	Conformational Variants of Duplex DNA Correlated with Cytosine-rich Chromosomal Fragile Sites. Journal of Biological Chemistry, 2009, 284, 7157-7164.	3.4	40
74	Solution Nuclear Magnetic Resonance Probing of Cation Binding Sites on Nucleic Acids. Methods in Enzymology, 2002, 338, 400-420.	1.0	35
75	Formation of supramolecular assemblies and liquid crystals by purine nucleobases and cyanuric acid in water: implications for the possible origins of RNA. Physical Chemistry Chemical Physics, 2016, 18, 20091-20096.	2.8	33
76	Searching for lost nucleotides of the pre-RNA World with a self-refining model of early Earth. Nature Communications, 2018, 9, 5171.	12.8	33
77	Comprehensive Investigation of the Energetics of Pyrimidine Nucleoside Formation in a Model Prebiotic Reaction. Journal of the American Chemical Society, 2009, 131, 16088-16095.	13.7	32
78	A blueprint for academic laboratories to produce SARS-CoV-2 quantitative RT-PCR test kits. Journal of Biological Chemistry, 2020, 295, 15438-15453.	3.4	31
79	Bacterial protein HU dictates the morphology of DNA condensates produced by crowding agents and polyamines. Nucleic Acids Research, 2007, 35, 951-961.	14.5	29
80	Glycosylation of a model proto-RNA nucleobase with non-ribose sugars: implications for the prebiotic synthesis of nucleosides. Organic and Biomolecular Chemistry, 2018, 16, 1263-1271.	2.8	29
81	Water and Life: The Medium is the Message. Journal of Molecular Evolution, 2021, 89, 2-11.	1.8	29
82	Molecular dynamics simulations and coupled nucleotide substitution experiments indicate the nature of A·A base pairing and a putative structure of the coralyne-induced homo-adenine duplex. Nucleic Acids Research, 2009, 37, 7715-7727.	14.5	28
83	Kinetics of prebiotic depsipeptide formation from the ester–amide exchange reaction. Physical Chemistry Chemical Physics, 2016, 18, 28441-28450.	2.8	28
84	Elongation of Model Prebiotic Proto-Peptides by Continuous Monomer Feeding. Macromolecules, 2017, 50, 9286-9294.	4.8	27
85	Condensation of oligonucleotides assembled into nicked and gapped duplexes: potential structures for oligonucleotide delivery. Nucleic Acids Research, 2005, 33, 143-151.	14.5	26
86	A Stark Contrast to Modern Earth: Phosphate Mineral Transformation and Nucleoside Phosphorylation in an Iron―and Cyanideâ€Rich Early Earth Scenario. Angewandte Chemie - International Edition, 2019, 58, 16981-16987.	13.8	26
87	Gene packaging with lipids, peptides and viruses inhibits transfection by electroporation in vitro. Journal of Controlled Release, 2003, 86, 361-370.	9.9	25
88	Iron mediates catalysis of nucleic acid processing enzymes: support for Fe(II) as a cofactor before the great oxidation event. Nucleic Acids Research, 2017, 45, 3634-3642.	14.5	25
89	Silicate-Promoted Phosphorylation of Glycerol in Non-Aqueous Solvents: A Prebiotically Plausible Route to Organophosphates. Life, 2017, 7, 29.	2.4	25
90	Integration Host Factor (IHF) Dictates the Structure of Polyamine-DNA Condensates: Implications for the Role of IHF in the Compaction of Bacterial Chromatin. Biochemistry, 2009, 48, 667-675.	2.5	24

#	Article	IF	Citations
91	Water-Soluble Supramolecular Polymers of Paired and Stacked Heterocycles: Assembly, Structure, Properties, and a Possible Path to Pre-RNA. Journal of the American Chemical Society, 2021, 143, 9279-9296.	13.7	24
92	Thioesters provide a plausible prebiotic path to proto-peptides. Nature Communications, 2022, 13, 2569.	12.8	24
93	In Vitro Secondary Structure of the Genomic RNA of Satellite Tobacco Mosaic Virus. PLoS ONE, 2013, 8, e54384.	2.5	23
94	Prebiotic Origin of Preâ€RNA Building Blocks in a Urea "Warm Little Pond―Scenario. ChemBioChem, 2020, 21, 3504-3510.	2.6	23
95	Introduction: Chemical Evolution and the Origins of Life. Chemical Reviews, 2020, 120, 4613-4615.	47.7	23
96	Solvent viscosity facilitates replication and ribozyme catalysis from an RNA duplex in a model prebiotic process. Nucleic Acids Research, 2019, 47, 6569-6577.	14.5	22
97	Domain III of the T. thermophilus 23S rRNA folds independently to a near-native state. Rna, 2012, 18, 752-758.	3.5	21
98	Ribosomal small subunit domains radiate from a central core. Scientific Reports, 2016, 6, 20885.	3.3	21
99	Evidence of strong hydrogen bonding by 8-aminoguanine. Chemical Communications, 2009, , 647-649.	4.1	20
100	SalivaSTAT: Direct-PCR and Pooling of Saliva Samples Collected in Healthcare and Community Setting for SARS-CoV-2 Mass Surveillance. Diagnostics, 2021, 11, 904.	2.6	19
101	Solution Structure and Thermodynamics of $2\hat{a}\in ^2$, $5\hat{a}\in ^2$ RNA Intercalation. Journal of the American Chemical Society, 2009, 131, 5831-5838.	13.7	18
102	Reversible Transformation of a Supramolecular Hydrogel by Redox Switching of Methylene Blue—A Noncovalent Chain Stopper. ACS Omega, 2020, 5, 344-349.	3.5	18
103	Submicromolar, Selective Gâ€Quadruplex Ligands from One Pot: Thermodynamic and Structural Studies of Human Telomeric DNA Binding by Azacyanines. ChemBioChem, 2008, 9, 1889-1892.	2.6	17
104	Enhanced Nonenzymatic Ligation of Homopurine Miniduplexes: Support for Greater Base Stacking in a Preâ€RNA World. ChemBioChem, 2013, 14, 45-48.	2.6	17
105	Darwin's Warm Little Pond: A Oneâ€Pot Reaction for Prebiotic Phosphorylation and the Mobilization of Phosphate from Minerals in a Ureaâ€Based Solvent. Angewandte Chemie, 2016, 128, 13443-13447.	2.0	17
106	Towards Efficient Nonenzymatic DNA Ligation: Comparing Key Parameters for Maximizing Ligation Rates and Yields with Carbodiimide Activation**. ChemBioChem, 2020, 21, 3359-3370.	2.6	17
107	Transition metals enhance prebiotic depsipeptide oligomerization reactions involving histidine. RSC Advances, 2021, 11, 3534-3538.	3.6	17
108	Structure of polyglutamine. FEBS Letters, 2000, 472, 166-167.	2.8	16

#	Article	IF	CITATIONS
109	DFT Energy Surfaces for Aminopurine Homodimers and Their Conjugate Acid Ions. Journal of Physical Chemistry A, 2007, 111, 3369-3377.	2.5	16
110	Nonenzymatic Ligation of DNA with a Reversible Step and a Final Linkage that Can Be Used in PCR. ChemBioChem, 2012, 13, 1121-1124.	2.6	15
111	Characterization of nigerlysin \hat{A} $\hat{\mathbb{Q}}$, hemolysin produced by Aspergillus niger, and effect on mouse neuronal cells in vitro. Toxicology, 2006, 219, 150-155.	4.2	14
112	A Possible Path to Prebiotic Peptides Involving Silica and Hydroxy Acidâ€Mediated Amide Bond Formation. ChemBioChem, 2018, 19, 1913-1917.	2.6	14
113	Chapter 4. Metal Ion Interactions with G-Quadruplex Structures. RSC Biomolecular Sciences, 2008, , 118-153.	0.4	14
114	Our Odyssey to Find a Plausible Prebiotic Path to RNA: The First Twenty Years. Synlett, 2016, 28, 36-55.	1.8	13
115	Exquisite regulation of supramolecular equilibrium polymers in water: chain stoppers control length, polydispersity and viscoelasticity. Polymer Chemistry, 2018, 9, 5268-5277.	3.9	13
116	X-ray Fiber Diffraction and Computational Analyses of Stacked Hexads in Supramolecular Polymers: Insight into Self-Assembly in Water by Prospective Prebiotic Nucleobases. Journal of the American Chemical Society, 2021, 143, 6079-6094.	13.7	13
117	Depsipeptide Nucleic Acids: Prebiotic Formation, Oligomerization, and Self-Assembly of a New Proto-Nucleic Acid Candidate. Journal of the American Chemical Society, 2021, 143, 13525-13537.	13.7	13
118	Molecular Recognition of Watson–Crickâ€Like Purine–Purine Base Pairs. ChemBioChem, 2011, 12, 2155-2158.	2.6	12
119	The Prebiotic Provenance of Semi-Aqueous Solvents. Origins of Life and Evolution of Biospheres, 2020, 50, 1-14.	1.9	11
120	The Unexpected Baseâ€Pairing Behavior of Cyanuric Acid in RNA and Ribose versus Cyanuric Acid Induced Helicene Assembly of Nucleic Acids: Implications for the Preâ€RNA Paradigm. Chemistry - A European Journal, 2021, 27, 4033-4042.	3.3	11
121	Protein-free ribosomal RNA folds to a near-native state in the presence of Mg ²⁺ . RSC Advances, 2017, 7, 54674-54681.	3.6	10
122	The proto-Nucleic Acid Builder: a software tool for constructing nucleic acid analogs. Nucleic Acids Research, 2021, 49, 79-89.	14.5	10
123	MgCl2 Enhances Cluster Formation by Nanoscale Toroidal DNA Condensates. Journal of Cluster Science, 2003, 14, 115-122.	3.3	8
124	Adenine Synthesis in a Model Prebiotic Reaction: Connecting Origin of Life Chemistry with Biology. Journal of Chemical Education, 2011, 88, 1698-1701.	2.3	8
125	Searching for Possible Ancestors of RNA: The Self-Assembly Hypothesis for the Origin of Proto-RNA. Nucleic Acids and Molecular Biology, 2018, , 143-174.	0.2	8
126	RNA nucleosides built in one prebiotic pot. Science, 2019, 366, 32-33.	12.6	8

#	Article	IF	CITATIONS
127	RNA–DNA Chimeras in the Context of an RNA World Transition to an RNA/DNA World. Angewandte Chemie, 2016, 128, 13398-13403.	2.0	7
128	Mineral Surfaces: A Mixed Blessing for the RNA World?. Astrobiology, 2009, 9, 253-255.	3.0	6
129	Small molecule-mediated duplex formation of nucleic acids with â€~incompatible' backbones. Chemical Communications, 2016, 52, 5436-5439.	4.1	6
130	Sequence-specific DNA–Metal Ion Interactions. RSC Biomolecular Sciences, 2008, , 75-117.	0.4	6
131	Water-Based Dynamic Depsipeptide Chemistry: Building Block Recycling and Oligomer Distribution Control Using Hydration–Dehydration Cycles. Jacs Au, 2022, 2, 1395-1404.	7.9	6
132	Spontaneous Symmetry Breaking in the Formation of Supramolecular Polymers: Implications for the Origin of Biological Homochirality. Angewandte Chemie, 2019, 131, 1467-1471.	2.0	5
133	A Shared Prebiotic Formation of Neopterins and Guanine Nucleosides from Pyrimidine Bases. Chemistry - A European Journal, 2022, 28, .	3.3	5
134	Step-Growth Control in Template-Directed Polymerization. Heterocycles, 2010, 82, 1477.	0.7	4
135	Differential Oligomerization of Alpha versus Beta Amino Acids and Hydroxy Acids in Abiotic Proto-Peptide Synthesis Reactions. Life, 2022, 12, 265.	2.4	4
136	A Stark Contrast to Modern Earth: Phosphate Mineral Transformation and Nucleoside Phosphorylation in an Iron―and Cyanideâ€Rich Early Earth Scenario. Angewandte Chemie, 2019, 131, 17137-17143.	2.0	3
137	Supramolecular assembly-enabled homochiral polymerization of short (dA) _{<i>n</i>} oligonucleotides. Chemical Communications, 2021, 57, 13602-13605.	4.1	3
138	Model systems. Current Opinion in Chemical Biology, 2004, 8, 627-628.	6.1	1
139	Self-Assembly and the Origin of the First RNA-Like Polymers. ACS Symposium Series, 2010, , 109-132.	0.5	1
140	Cover Picture: Enzymatic Behavior by Intercalating Molecules in a Template-Directed Ligation Reaction (Angew. Chem. Int. Ed. 15/2004). Angewandte Chemie - International Edition, 2004, 43, 1895-1895.	13.8	0
141	Titelbild: Folding and Imaging of DNA Nanostructures in Anhydrous and Hydrated Deep-Eutectic Solvents (Angew. Chem. 23/2015). Angewandte Chemie, 2015, 127, 6753-6753.	2.0	0
142	Titelbild: Darwin's Warm Little Pond: A Oneâ€Pot Reaction for Prebiotic Phosphorylation and the Mobilization of Phosphate from Minerals in a Ureaâ€Based Solvent (Angew. Chem. 42/2016). Angewandte Chemie, 2016, 128, 13107-13107.	2.0	0
143	Frontispiece: The Unexpected Baseâ€Pairing Behavior of Cyanuric Acid in RNA and Ribose versus Cyanuric Acid Induced Helicene Assembly of Nucleic Acids: Implications for the Preâ€RNA Paradigm. Chemistry - A European Journal, 2021, 27, .	3.3	0
144	Bacterial protein HU dictates the morphology of DNA condensates produced by crowding agents and polyamines. FASEB Journal, 2007, 21, A283.	0.5	0