Selvaraj Poonguzhali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1297806/publications.pdf

Version: 2024-02-01

41 papers

2,699 citations

28 h-index 276875 41 g-index

42 all docs 42 docs citations

times ranked

42

2662 citing authors

#	Article	IF	CITATIONS
1	Pseudomonas sesami sp. nov., a plant growth-promoting Gammaproteobacteria isolated from the rhizosphere of Sesamum indicum L Antonie Van Leeuwenhoek, 2017, 110, 843-852.	1.7	11
2	Paenibacillus polysaccharolyticus sp. nov., a xylanolytic and cellulolytic bacteria isolated from leaves of Bamboo Phyllostachys aureosulcata. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 2127-2133.	1.7	17
3	Streptomyces pini sp. nov., an actinomycete isolated from phylloplane of pine (Pinus sylvestris L.) needle-like leaves. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4204-4210.	1.7	14
4	Paenibacillus methanolicus sp. nov., a xylanolytic, methanol-utilizing bacterium isolated from the phyllosphere of bamboo (Pseudosasa japonica). International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4362-4366.	1.7	9
5	Arachidicoccus rhizosphaerae gen. nov., sp. nov., a plant-growth-promoting bacterium in the family Chitinophagaceae isolated from rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 578-586.	1.7	95
6	Methylobacterium pseudosasicola sp. nov. and Methylobacterium phyllostachyos sp. nov., isolated from bamboo leaf surfaces. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2376-2384.	1.7	44
7	Rhodanobacter glycinis sp. nov., a yellow-pigmented gammaproteobacterium isolated from the rhizoplane of field-grown soybean. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2023-2028.	1.7	16
8	Methylobacterium pseudosasae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the bamboo phyllosphere. Antonie Van Leeuwenhoek, 2014, 105, 367-376.	1.7	20
9	Duganella sacchari sp. nov. and Duganella radicis sp. nov., two novel species isolated from rhizosphere of field-grown sugar cane. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 1126-1131.	1.7	29
10	Methylobacillus rhizosphaerae sp. nov., a novel plant-associated methylotrophic bacterium isolated from rhizosphere of red pepper. Antonie Van Leeuwenhoek, 2013, 103, 475-484.	1.7	24
11	The Late Endosomal HOPS Complex Anchors Active G-Protein Signaling Essential for Pathogenesis in Magnaporthe oryzae. PLoS Pathogens, 2013, 9, e1003527.	4.7	58
12	Methylobacterium gossipiicola sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the cotton phyllosphere. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 162-167.	1.7	43
13	Bacillus rhizosphaerae sp. nov., an novel diazotrophic bacterium isolated from sugarcane rhizosphere soil. Antonie Van Leeuwenhoek, 2011, 100, 437-444.	1.7	35
14	Microbacterium azadirachtae sp. nov., a plant-growth-promoting actinobacterium isolated from the rhizoplane of neem seedlings. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1687-1692.	1.7	63
15	Effect of co-inoculation of methylotrophic Methylobacterium oryzae with Azospirillum brasilense and Burkholderia pyrrocinia on the growth and nutrient uptake of tomato, red pepper and rice. Plant and Soil, 2010, 328, 71-82.	3.7	83
16	Flavobacterium glycines sp. nov., a facultative methylotroph isolated from the rhizosphere of soybean. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 2187-2192.	1.7	47
17	Mucilaginibacter gossypii sp. nov. and Mucilaginibacter gossypiicola sp. nov., plant-growth-promoting bacteria isolated from cotton rhizosphere soils. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 2451-2457.	1.7	91
18	Enterobacter arachidis sp. nov., a plant-growth-promoting diazotrophic bacterium isolated from rhizosphere soil of groundnut. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1559-1564.	1.7	56

#	Article	IF	CITATIONS
19	Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 2490-2495.	1.7	127
20	Leifsonia soli sp. nov., a yellow-pigmented actinobacterium isolated from teak rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1322-1327.	1.7	33
21	Methylophilus rhizosphaerae sp. nov., a restricted facultative methylotroph isolated from rice rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 2904-2908.	1.7	47
22	Methylobacterium phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from the phyllosphere of rice. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 22-27.	1.7	90
23	Nodulation and plant-growth promotion by methylotrophic bacteria isolated from tropical legumes. Microbiological Research, 2009, 164, 114-120.	5.3	28
24	Characterization of plant-growth promoting diazotrophic bacteria isolated from field grown Chinese cabbage under different fertilization conditions. Journal of Microbiology, 2009, 47, 147-155.	2.8	27
25	Colonization pattern of plant root and leaf surfaces visualized by use of green-fluorescent-marked strain of Methylobacterium suomiense and its persistence in rhizosphere. Applied Microbiology and Biotechnology, 2008, 78, 1033-1043.	3.6	57
26	Isolation and identification of phosphate solubilizing bacteria from chinese cabbage and their effect on growth and phosphorus utilization of plants. Journal of Microbiology and Biotechnology, 2008, 18, 773-7.	2.1	80
27	Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 326-331.	1.7	117
28	Quorum-sensing signals produced by plant-growth promoting Burkholderia strains under in vitro and in planta conditions. Research in Microbiology, 2007, 158, 287-294.	2.1	31
29	Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere, 2007, 69, 220-228.	8.2	372
30	Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos-susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism towards entomopathogenic fungi and host insect nutriti. Journal of Applied Microbiology, 2007, 103, 2664-2675.	3.1	93
31	Potential for plant growth promotion in groundnut (Arachis hypogaea L.) cv. ALR-2 by co-inoculation of sulfur-oxidizing bacteria and Rhizobium. Microbiological Research, 2007, 162, 139-153.	5.3	72
32	Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing Methylobacterium oryzae and interactions with auxins and ACC regulation of ethylene in canola (Brassica campestris). Planta, 2007, 226, 867-876.	3.2	116
33	Production of acyl-homoserine lactone quorum-sensing signals is widespread in gram-negative Methylobacterium. Journal of Microbiology and Biotechnology, 2007, 17, 226-33.	2.1	28
34	Influence of plant species and environmental conditions on epiphytic and endophytic pink-pigmented facultative methylotrophic bacterial populations associated with field-grown rice cultivars. Journal of Microbiology and Biotechnology, 2007, 17, 1645-54.	2.1	14
35	Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris ssp pekinensis and screening of traits for potential plant growth promotion. Plant and Soil, 2006, 286, 167-180.	3.7	48
36	Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta, 2006, 224, 268-278.	3.2	242

#	Article	IF	CITATIONS
37	Plant Growth–Promoting Methylobacterium Induces Defense Responses in Groundnut (Arachis) Tj ETQq1 1 0.	78 <u>43</u> 14 rg	BT ₁ 29verlock
38	A new insight into foliar applied methanol influencing phylloplane methylotrophic dynamics and growth promotion of cotton (Gossypium hirsutum L.) and sugarcane (Saccharum officinarum L.). Environmental and Experimental Botany, 2006, 57, 168-176.	4.2	51
39	Influence of pesticides on the growth rate and plant-growth promoting traits of Gluconacetobacter diazotrophicus. Pesticide Biochemistry and Physiology, 2006, 84, 143-154.	3.6	63
40	Laboratory Evaluation of Relative Toxicities of Some Insecticides Against Trichogramma chilonis (Hymenoptera: Trichogrammatidae) and Chrysoperla carnea (Neuroptera: Chrysopidae). Journal of Asia-Pacific Entomology, 2005, 8, 381-386.	0.9	7
41	Pink-pigmented facultative methylotrophic bacteria accelerate germination, growth and yield of sugarcane clone Co86032 (Saccharum officinarum L.). Biology and Fertility of Soils, 2005, 41, 350-358.	4.3	72