Marta Fonrodona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1297569/publications.pdf

Version: 2024-02-01

567281 454955 1,081 34 15 citations h-index g-index papers

34 34 34 1474 docs citations times ranked citing authors all docs

30

#	Article	IF	Citations
1	Solutionâ€Processed Bulkâ€Heterojunction Solar Cells Based on Monodisperse Dendritic Oligothiophenes. Advanced Functional Materials, 2008, 18, 3323-3331.	14.9	234
2	Low-band gap poly(di-2-thienylthienopyrazine):fullerene solar cells. Applied Physics Letters, 2006, 88, 153511.	3.3	191
3	Photovoltaic Performance of an Ultrasmall Band Gap Polymer. Organic Letters, 2009, 11, 903-906.	4.6	128
4	Synthesis and photovoltaic performance of a series of small band gap polymers. Journal of Materials Chemistry, 2009, 19, 5336.	6.7	92
5	PEN as substrate for new solar cell technologies. Solar Energy Materials and Solar Cells, 2005, 89, 37-47.	6.2	66
6	Copper phthalocyanine thin-film transistors with polymeric gate dielectric. Journal of Non-Crystalline Solids, 2006, 352, 1778-1782.	3.1	58
7	The influence of side chains on solubility and photovoltaic performance of dithiophene–thienopyrazine small band gap copolymers. Polymer, 2009, 50, 4564-4570.	3.8	50
8	Stability of hydrogenated nanocrystalline silicon thin-film transistors. Thin Solid Films, 2001, 395, 335-338.	1.8	29
9	Top-gate microcrystalline silicon TFTs processed at low temperature (<200 \hat{A}° C). Thin Solid Films, 2005, 487, 227-231.	1.8	26
10	Studies on grain boundaries in nanocrystalline silicon grown by hot-wire CVD. Journal of Non-Crystalline Solids, 2002, 299-302, 14-19.	3.1	23
11	Low temperature amorphous and nanocrystalline silicon thin film transistors deposited by Hot-Wire CVD on glass substrate. Thin Solid Films, 2006, 501, 303-306.	1.8	23
12	Analysis of bias stress on thin-film transistors obtained by Hot-Wire Chemical Vapour Deposition. Thin Solid Films, 2001, 383, 307-309.	1.8	22
13	Bifacial heterojunction silicon solar cells by hot-wire CVD with open-circuit voltages exceeding 600 mV. Thin Solid Films, 2006, 511-512, 415-419.	1.8	21
14	Surface passivation of crystalline silicon by Cat-CVD amorphous and nanocrystalline thin silicon films. Thin Solid Films, 2003, 430, 270-273.	1.8	19
15	Low level optical absorption measurements on organic semiconductors. Journal of Non-Crystalline Solids, 2006, 352, 1663-1667.	3.1	17
16	Photodiodes based on fullerene semiconductor. Thin Solid Films, 2007, 515, 7675-7678.	1.8	14
17	Progress in single junction microcrystalline silicon solar cells deposited by Hot-Wire CVD. Thin Solid Films, 2006, 501, 247-251.	1.8	11
18	Electronic transport in low temperature nanocrystalline silicon thin-film transistors obtained by hot-wire CVD. Journal of Non-Crystalline Solids, 2002, 299-302, 400-404.	3.1	8

#	Article	IF	CITATIONS
19	The synthesis and photovoltaic performance of regioregular poly[3-(n-butoxymethyl)thiophene]. Thin Solid Films, 2008, 516, 7176-7180.	1.8	8
20	Microdoping compensation of microcrystalline silicon obtained by hot-wire chemical vapour deposition. Solar Energy Materials and Solar Cells, 2000, 63, 237-246.	6.2	6
21	Investigations on doping of amorphous and nanocrystalline silicon films deposited by catalytic chemical vapour deposition. Thin Solid Films, 2001, 395, 125-129.	1.8	6
22	Optical analysis of textured plastic substrates to be used in thin silicon solar cells. Solar Energy Materials and Solar Cells, 2005, 87, 333-341.	6.2	6
23	Characterization of bifacial heterojunction silicon solar cells obtained by hot-wire CVD. Journal of Non-Crystalline Solids, 2006, 352, 1953-1957.	3.1	5
24	Thin silicon films ranging from amorphous to nanocrystalline obtained by hot-wire CVD. Thin Solid Films, 2001, 383, 189-191.	1.8	4
25	Substrate influence on the properties of doped thin silicon layers grown by Cat-CVD. Thin Solid Films, 2003, 430, 157-160.	1.8	4
26	Controlling morphology and photovoltaic properties by chemical structure in copolymers of cyclopentadithiophene and thiophene segments. Solar Energy Materials and Solar Cells, 2010, 94, 2218-2222.	6.2	4
27	Structure of microcrystalline silicon films deposited at very low temperatures by hot-wire CVD. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 536-541.	3.5	2
28	Shutterless deposition of phosphorous doped microcrystalline silicon by Cat-CVD. Thin Solid Films, 2003, 430, 145-148.	1.8	2
29	Optoelectronic studies in nanocrystalline silicon Schottky diodes obtained by hot-wire CVD. Thin Solid Films, 2001, 383, 258-260.	1.8	1
30	Control of doped layers in p–i–n microcrystalline solar cells fully deposited with HWCVD. Journal of Non-Crystalline Solids, 2004, 338-340, 659-662.	3.1	1
31	Collection asymmetry in a drift-driven p–i–n solar cell. Journal of Non-Crystalline Solids, 2002, 299-302, 1142-1146.	3.1	0
32	Heterojunction silicon solar cells obtained by hot-wire CVD at low temperature., 0,,.		0
33	Nanocrystalline top-gate thin film transistors deposited at low temperature by hot-wire CVD on glass. , 0, , .		0
34	EU COST Action MP1307 $\hat{a} \in ``Unravelling the degradation mechanisms of emerging solar cell technologies. , 2016, , .$		0