
Christophe Antoniewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1297239/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A single-cell RNA-sequencing training and analysis suite using the Galaxy framework. GigaScience, 2020, 9, .	6.4	14
2	tRNA Fragments Populations Analysis in Mutants Affecting tRNAs Processing and tRNA Methylation. Frontiers in Genetics, 2020, 11, 518949.	2.3	19
3	tRNA 2′-O-methylation by a duo of TRM7/FTSJ1 proteins modulates small RNA silencing in Drosophila. Nucleic Acids Research, 2020, 48, 2050-2072.	14.5	30
4	Capture at the single cell level of metabolic modules distinguishing aggressive and indolent glioblastoma cells. Acta Neuropathologica Communications, 2019, 7, 155.	5.2	21
5	GC content shapes mRNA storage and decay in human cells. ELife, 2019, 8, .	6.0	121
6	Small-RNA sequencing identifies dynamic microRNA deregulation during skeletal muscle lineage progression. Scientific Reports, 2018, 8, 4208.	3.3	18
7	Dual-layer transposon repression in heads of <i>Drosophila melanogaster</i> . Rna, 2018, 24, 1749-1760.	3.5	14
8	Metavisitor, a Suite of Galaxy Tools for Simple and Rapid Detection and Discovery of Viruses in Deep Sequence Data. PLoS ONE, 2017, 12, e0168397.	2.5	8
9	Identification and Characterization of Two Novel RNA Viruses from Anopheles gambiae Species Complex Mosquitoes. PLoS ONE, 2016, 11, e0153881.	2.5	33
10	The Cricket Paralysis Virus Suppressor Inhibits microRNA Silencing Mediated by the Drosophila Argonaute-2 Protein. PLoS ONE, 2015, 10, e0120205.	2.5	7
11	Paramutation in <i>Drosophila</i> Requires Both Nuclear and Cytoplasmic Actors of the piRNA Pathway and Induces <i>Cis</i> -spreading of piRNA Production. Genetics, 2015, 201, 1381-1396.	2.9	43
12	Antiviral immunity of <i>Anopheles gambiae</i> is highly compartmentalized, with distinct roles for RNA interference and gut microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E176-85.	7.1	163
13	Bacterial Infection Drives the Expression Dynamics of microRNAs and Their isomiRs. PLoS Genetics, 2015, 11, e1005064.	3.5	60
14	tRNA processing defects induce replication stressÂand Chk2â€dependent disruption of piRNAÂtranscription. EMBO Journal, 2015, 34, 3009-3027.	7.8	57
15	Computing siRNA and piRNA Overlap Signatures. Methods in Molecular Biology, 2014, 1173, 135-146.	0.9	63
16	Isolation of Small Interfering RNAs Using Viral Suppressors of RNA Interference. Methods in Molecular Biology, 2014, 1173, 147-155.	0.9	0
17	Profiles of piRNA abundances at emerging or established piRNA loci are determined by local DNA sequences. RNA Biology, 2013, 10, 1233-1239.	3.1	2
18	piRNAs and epigenetic conversion inDrosophila. Fly, 2013, 7, 237-241.	1.7	9

2

#	Article	IF	CITATIONS
19	AutomiG, a Biosensor to Detect Alterations in miRNA Biogenesis and in Small RNA Silencing Guided by Perfect Target Complementarity. PLoS ONE, 2013, 8, e74296.	2.5	5
20	Convergent Evolution of Argonaute-2 Slicer Antagonism in Two Distinct Insect RNA Viruses. PLoS Pathogens, 2012, 8, e1002872.	4.7	86
21	Paramutation in Drosophila linked to emergence of a piRNA-producing locus. Nature, 2012, 490, 112-115.	27.8	216
22	Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles. Rna, 2012, 18, 253-264.	3.5	84
23	Lack of miRNA Misregulation at Early Pathological Stages in Drosophila Neurodegenerative Disease Models. Frontiers in Genetics, 2012, 3, 226.	2.3	18
24	Visitor, An Informatic Pipeline for Analysis of Viral siRNA Sequencing Datasets. Methods in Molecular Biology, 2011, 721, 123-142.	0.9	6
25	Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral defense in Drosophila. Nature Structural and Molecular Biology, 2010, 17, 547-554.	8.2	185
26	Viral Suppressors of RNA Silencing Hinder Exogenous and Endogenous Small RNA Pathways in Drosophila. PLoS ONE, 2009, 4, e5866.	2.5	58
27	The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21258-21263.	7.1	137
28	Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature, 2009, 458, 346-350.	27.8	243
29	Signatures of Purifying and Local Positive Selection in Human miRNAs. American Journal of Human Genetics, 2009, 84, 316-327.	6.2	83
30	The DExD/H-box helicase Dicer-2 mediates the induction of antiviral activity in drosophila. Nature Immunology, 2008, 9, 1425-1432.	14.5	310
31	The Drosophila NURF remodelling and the ATAC histone acetylase complexes functionally interact and are required for global chromosome organization. EMBO Reports, 2008, 9, 187-192.	4.5	36
32	A Novel Ecdysone Receptor Mediates Steroid-Regulated Developmental Events during the Mid-Third Instar of Drosophila. PLoS Genetics, 2008, 4, e1000102.	3.5	86
33	MicroRNAs in Drosophila: The magic wand to enter the Chamber of Secrets?. Biochimie, 2007, 89, 1211-1220.	2.6	14
34	The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes and Development, 2006, 20, 2985-2995.	5.9	511
35	Ligand-dependent de-repression via EcR/USP acts as a gate to coordinate the differentiation of sensory neurons in the Drosophila wing. Development (Cambridge), 2005, 132, 5239-5248.	2.5	79
36	The Histone H3 Acetylase dGcn5 Is a Key Player in Drosophila melanogaster Metamorphosis. Molecular and Cellular Biology, 2005, 25, 8228-8238.	2.3	92

#	Article	IF	CITATIONS
37	Antagonistic Actions of Ecdysone and Insulins Determine Final Size in Drosophila. Science, 2005, 310, 667-670.	12.6	547
38	batman Interacts with Polycomb and trithorax Group Genes and Encodes a BTB/POZ Protein That Is Included in a Complex Containing GAGA Factor. Molecular and Cellular Biology, 2003, 23, 1181-1195.	2.3	46
39	Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in <i>Drosophila</i> . Rna, 2003, 9, 299-308.	3.5	221
40	A UAS site substitution approach to the in vivo dissection of promoters: interplay between the GATAb activator and the AEF-1 repressor at a <i>Drosophila</i> ecdysone response unit. Development (Cambridge), 2001, 128, 2593-2602.	2.5	18
41	Developmental effects of a chimericultraspiracle gene derived fromDrosophila andChironomus. Genesis, 2000, 28, 125-133.	1.6	19
42	Dynamic Expression of Broad-Complex Isoforms Mediates Temporal Control of an Ecdysteroid Target Gene at the Onset of Drosophila Metamorphosis. Developmental Biology, 2000, 227, 104-117.	2.0	63
43	Developmental effects of a chimeric ultraspiracle gene derived from Drosophila and Chironomus. Genesis, 2000, 28, 125-133.	1.6	4
44	Ecdysone-regulation of synthesis and processing of Fat Body Protein 1, the larval serum protein receptor of Drosophila melanogaster. FEBS Journal, 1999, 262, 49-55.	0.2	66
45	Dual Requirement for the EcR/USP Nuclear Receptor and the dGATAb Factor in an Ecdysone Response in <i>Drosophila melanogaster</i> . Molecular and Cellular Biology, 1999, 19, 5732-5742.	2.3	39
46	Le co-activateur du récepteur nucléaire était un ARN !. Medecine/Sciences, 1999, 15, 1153.	0.2	0
47	Cucurbitacins are insect steroid hormone antagonists acting at the ecdysteroid receptor. Biochemical Journal, 1997, 327, 643-650.	3.7	100
48	Direct Repeats Bind the EcR/USP Receptor and Mediate Ecdysteroid Responses in <i>Drosophila melanogaster</i> . Molecular and Cellular Biology, 1996, 16, 2977-2986.	2.3	104
49	Characterization of an EcR/USP heterodimer target site that mediates ecdysone responsiveness of theDrosophila Lsp-2 gene. Molecular Genetics and Genomics, 1996, 252, 221-221.	2.4	0
50	Characterization of an EcR/USP heterodimer target site that mediates ecdysone responsiveness of the Drosophila Lsp-2 gene. Molecular Genetics and Genomics, 1995, 249, 545-556.	2.4	43
51	Expression and Function of the ultraspiracle (usp) Gene during Development of Drosophila melanogaster. Developmental Biology, 1994, 165, 38-52.	2.0	100
52	The ecdysone response enhancer of the Fbp1 gene of Drosophila melanogaster is a direct target for the EcR/USP nuclear receptor Molecular and Cellular Biology, 1994, 14, 4465-4474.	2.3	74
53	Structural features critical to the activity of an ecdysone receptor binding site. Insect Biochemistry and Molecular Biology, 1993, 23, 105-114.	2.7	102
54	The spoIIJ gene, which regulates early developmental steps in Bacillus subtilis, belongs to a class of environmentally responsive genes. Journal of Bacteriology, 1990, 172, 86-93.	2.2	226