
Harold Corke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1297149/publications.pdf Version: 2024-02-01

HADOLD CODE

#	Article	IF	CITATIONS
1	Recent advancements in encapsulation of chitosan-based enzymes and their applications in food industry. Critical Reviews in Food Science and Nutrition, 2023, 63, 11044-11062.	10.3	3
2	The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives. Critical Reviews in Food Science and Nutrition, 2022, 62, 832-859.	10.3	68
3	Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Critical Reviews in Food Science and Nutrition, 2022, 62, 3817-3832.	10.3	36
4	L-citrulline enriched fermented milk with Lactobacillus helveticus attenuates dextran sulfate sodium (DSS) induced colitis in mice. Journal of Nutritional Biochemistry, 2022, 99, 108858.	4.2	6
5	Removal of starch granule-associated proteins alters the physicochemical properties of diverse small granule starches. Food Hydrocolloids, 2022, 124, 107318.	10.7	11
6	Structure Design for Improving the Characteristic Attributes of Extruded Plant-Based Meat Analogues. Food Biophysics, 2022, 17, 137-149.	3.0	24
7	Multi-scale structure of A- and B-type granules of normal and waxy hull-less barley starch. International Journal of Biological Macromolecules, 2022, 200, 42-49.	7.5	8
8	Architecture of outer shell and inner blocklets of rice starch granule is related to starch granule-associated proteins. Food Hydrocolloids, 2022, 127, 107551.	10.7	8
9	Chemical Characterization and In Vitro Anti-Cancer Activities of a Hot Water Soluble Polysaccharide from Hulless Barley Grass. Foods, 2022, 11, 677.	4.3	12
10	Natural biopolymer masks the bitterness of potassium chloride to achieve a highly efficient salt reduction for future foods. Biomaterials, 2022, 283, 121456.	11.4	7
11	Rheological properties, structure and digestibility of starches isolated from common bean (Phaseolus vulgaris L.) varieties from Europe and Asia. LWT - Food Science and Technology, 2022, 161, 113352.	5.2	16
12	Reducing synthetic colorants release from alginate-based liquid-core beads with a zein shell. Food Chemistry, 2022, 384, 132493.	8.2	3
13	Removal of starch granule associated proteins affects annealing of normal and waxy maize starches. Food Hydrocolloids, 2022, 131, 107695.	10.7	3
14	Introducing panda bean (Vigna umbellata (Thunb.) Ohwi et Ohashi) protein isolate as an alternative source of legume protein: Physicochemical, functional and nutritional characteristics. Food Chemistry, 2022, 388, 133016.	8.2	7
15	Advances in Bioactivity of MicroRNAs of Plant-Derived Exosome-Like Nanoparticles and Milk-Derived Extracellular Vesicles. Journal of Agricultural and Food Chemistry, 2022, 70, 6285-6299.	5.2	30
16	Physicochemical properties of A- and B-type granules isolated from waxy and normal hull-less barley starch. International Journal of Biological Macromolecules, 2022, 213, 456-464.	7.5	4
17	The role of amyloid fibrils in the modification of whey protein isolate gels with the form of stranded and particulate microstructures. Food Research International, 2021, 140, 109856.	6.2	28
18	Cellulose and cellulose derivatives: Different colloidal states and food-related applications. Carbohydrate Polymers, 2021, 255, 117334.	10.2	85

#	Article	IF	CITATIONS
19	Starch properties of high and low amylose proso millet (Panicum miliaceum L.) genotypes are differentially affected by varying salt and pH. Food Chemistry, 2021, 337, 127784.	8.2	14
20	Global volatile signature and polyphenols patterns in Vespolina wines according to vintage. International Journal of Food Science and Technology, 2021, 56, 1551-1561.	2.7	4
21	Microencapsulation of probiotic lactobacilli with shellac as moisture barrier and to allow controlled release. Journal of the Science of Food and Agriculture, 2021, 101, 726-734.	3.5	27
22	Soybean lecithin-stabilized oil-in-water (O/W) emulsions increase the stability and in vitro bioaccessibility of bioactive nutrients. Food Chemistry, 2021, 338, 128071.	8.2	27
23	Gel texture and rheological properties of normal amylose and waxy potato starch blends with rice starches differing in amylose content. International Journal of Food Science and Technology, 2021, 56, 1946-1958.	2.7	15
24	Molar mass effect in food and health. Food Hydrocolloids, 2021, 112, 106110.	10.7	19
25	Interfacial and emulsion-stabilizing properties of zein nanoparticles: differences among zein fractions (α-, β-, and γ-zein). Food and Function, 2021, 12, 1361-1370.	4.6	17
26	Prolaminâ€based complexes: Structure design and foodâ€related applications. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1120-1149.	11.7	35
27	Use of heatâ€moisture treated maize starch to modify the properties of wheat flour and the quality of noodles. International Journal of Food Science and Technology, 2021, 56, 3607-3617.	2.7	6
28	Ions-induced gelation of alginate: Mechanisms and applications. International Journal of Biological Macromolecules, 2021, 177, 578-588.	7.5	176
29	Addition of waxy, low―or highâ€amylose rice starch differentially affects microstructure, water migration, texture and cooking quality of dried potato starch noodles. International Journal of Food Science and Technology, 2021, 56, 5619-5628.	2.7	8
30	Material Perspective on the Structural Design of Artificial Meat. Advanced Sustainable Systems, 2021, 5, 2100017.	5.3	7
31	Polishing conditions in rice milling differentially affect the physicochemical properties of waxy, low- and high-amylose rice starch. Journal of Cereal Science, 2021, 99, 103183.	3.7	16
32	Prevalence, Characterization, and Control of <i>Campylobacter jejuni</i> Isolated from Raw Milk, Cheese, and Human Stool Samples in Beni-Suef Governorate, Egypt. Foodborne Pathogens and Disease, 2021, 18, 322-330.	1.8	4
33	Prevalence and Survival of <i>Stenotrophomonas</i> Species in Milk and Dairy Products in Egypt. Foodborne Pathogens and Disease, 2021, 18, 337-345.	1.8	3
34	Emulsions Stabilization and Lipid Digestion Profiles of Sodium Alginate Microgels: Effect of the Crosslink Density. Food Biophysics, 2021, 16, 346-354.	3.0	6
35	Removal of starch granule associated proteins alters the physicochemical properties of annealed rice starches. International Journal of Biological Macromolecules, 2021, 185, 412-418.	7.5	16
36	Modulating the in vitro gastric digestion of heat-induced beta-lactoglobulin aggregates: Incorporation with polysaccharide. Food Chemistry, 2021, 354, 129506.	8.2	15

#	Article	IF	CITATIONS
37	Electrostatic Interaction-Based Fabrication of Calcium Alginate–Zein Core–Shell Microcapsules of Regulable Shapes and Sizes. Langmuir, 2021, 37, 10424-10432.	3.5	12
38	Evolution of physicochemical and antioxidant properties of whey protein isolate during fibrillization process. Food Chemistry, 2021, 357, 129751.	8.2	17
39	Microwave irradiation alters the rheological properties and molecular structure of hull-less barley starch. Food Hydrocolloids, 2021, 120, 106821.	10.7	17
40	Octenyl succinic anhydride modification alters blending effects of waxy potato and waxy rice starches. International Journal of Biological Macromolecules, 2021, 190, 1-10.	7.5	21
41	Surface microstructure of rice starch is altered by removal of granule-associated proteins. Food Hydrocolloids, 2021, 121, 107038.	10.7	21
42	Fundamentals of composites containing fibrous materials and hydrogels: A review on design and development for food applications. Food Chemistry, 2021, 364, 130329.	8.2	21
43	Microwave treatment alters the fine molecular structure of waxy hull-less barley starch. International Journal of Biological Macromolecules, 2021, 193, 1086-1092.	7.5	10
44	Antibacterial Activity and Multi-Targeting Mechanism of Dehydrocorydaline From Corydalis turtschaninovii Bess. Against Listeria monocytogenes. Frontiers in Microbiology, 2021, 12, 799094.	3.5	8
45	Nanochemoprevention with therapeutic benefits: An updated review focused on epigallocatechin gallate delivery. Critical Reviews in Food Science and Nutrition, 2020, 60, 1243-1264.	10.3	38
46	Physicochemical properties, digestibility and expected glycaemic index of high amylose rice differing in lengthâ€width ratio in Sri Lanka. International Journal of Food Science and Technology, 2020, 55, 74-81.	2.7	6
47	Starch granule-associated proteins affect the physicochemical properties of rice starch. Food Hydrocolloids, 2020, 101, 105504.	10.7	67
48	Phytochemicals, essential oils, and bioactivities of an underutilized wild fruit Cili (Rosa roxburghii). Industrial Crops and Products, 2020, 143, 111928.	5.2	37
49	Milling affects rheological and gel textural properties of rice flour. Cereal Chemistry, 2020, 97, 205-215.	2.2	9
50	Thermal processing of rice grains affects the physical properties of their pregelatinised rice flours. International Journal of Food Science and Technology, 2020, 55, 1375-1385.	2.7	11
51	Octenylsuccinylation differentially modifies the physicochemical properties and digestibility of small granule starches. International Journal of Biological Macromolecules, 2020, 144, 705-714.	7.5	29
52	New insights into food hydrogels with reinforced mechanical properties: A review on innovative strategies. Advances in Colloid and Interface Science, 2020, 285, 102278.	14.7	73
53	Modulation of oligoguluronate on the microstructure and properties of Ca-dependent soy protein gels. Carbohydrate Polymers, 2020, 250, 116920.	10.2	18
54	Tannins as an alternative to antibiotics. Food Bioscience, 2020, 38, 100751.	4.4	114

#	Article	IF	CITATIONS
55	Thermal and pasting properties and digestibility of blends of potato and rice starches differing in amylose content. International Journal of Biological Macromolecules, 2020, 165, 321-332.	7.5	23
56	Fabrication of Composite Structures of Lysozyme Fibril–Zein using Antisolvent Precipitation: Effects of Blending and pH Adjustment Sequences. Journal of Agricultural and Food Chemistry, 2020, 68, 11802-11809.	5.2	12
57	Phenolic profiles, antioxidant activities, and antiproliferative activities of different mung bean (Vigna) Tj ETQq1 1	0.784314 4.4	rgBT /Overlo
58	Investigation of food microstructure and texture using atomic force microscopy: A review. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2357-2379.	11.7	12
59	Microwave irradiation differentially affect the physicochemical properties of waxy and non-waxy hull-less barley starch. Journal of Cereal Science, 2020, 95, 103072.	3.7	41
60	Emulsion structure design for improving the oxidative stability of polyunsaturated fatty acids. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2955-2971.	11.7	46
61	Green Extraction of Antioxidant Polyphenols from Green Tea (Camellia sinensis). Antioxidants, 2020, 9, 785.	5.1	73
62	pH-Induced structural transitions in whey protein isolate and ultrasonically solubilized Persian gum mixture. Ultrasonics Sonochemistry, 2020, 68, 105190.	8.2	3
63	Egg-box model-based gelation of alginate and pectin: A review. Carbohydrate Polymers, 2020, 242, 116389.	10.2	357
64	Phenolic content and in vitro antioxidant activity in common beans (Phaseolus vulgaris L.) are not directly related to anti-proliferative activity. Food Bioscience, 2020, 36, 100662.	4.4	8
65	Pasting, thermal and rheological properties of octenylsuccinylate modified starches from diverse small granule starches differing in amylose content. Journal of Cereal Science, 2020, 95, 103030.	3.7	31
66	The health benefits, functional properties, modifications, and applications of pea (<i>Pisum) Tj ETQq0 0 0 rgBT /C Science and Food Safety, 2020, 19, 1835-1876.</i>)verlock 1(11.7	0 Tf 50 307 T 137
67	Removal of starch granule-associated proteins promotes α-amylase hydrolysis of rice starch granule. Food Chemistry, 2020, 330, 127313.	8.2	24
68	Antivirulence properties and related mechanisms of spice essential oils: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 1018-1055.	11.7	43
69	Large-Scale Screening of 239 Traditional Chinese Medicinal Plant Extracts for Their Antibacterial Activities against Multidrug-Resistant Staphylococcus aureus and Cytotoxic Activities. Pathogens, 2020, 9, 185.	2.8	25
70	In situ nanomechanical properties of natural oil bodies studied using atomic force microscopy. Journal of Colloid and Interface Science, 2020, 570, 362-374.	9.4	29
71	Fabrication, Characterization, and Formation Mechanism of Zein–Gum Arabic Nanocomposites in Aqueous Ethanol Solution with a High Ethanol Content. Journal of Agricultural and Food Chemistry, 2020, 68, 13138-13145.	5.2	19
72	Removal of starch granule-associated proteins affects amyloglucosidase hydrolysis of rice starch granules. Carbohydrate Polymers, 2020, 247, 116674.	10.2	16

#	Article	IF	CITATIONS
73	Environmental parameters-dependent self-assembling behaviors of α-zein in aqueous ethanol solution studied by atomic force microscopy. Food Chemistry, 2020, 331, 127349.	8.2	17
74	An introduction to the "Li Spicy Unit―for the pungency degree of spicy foods. International Journal of Food Properties, 2020, 23, 108-115.	3.0	2
75	Screening and Spontaneous Mutation of Pickle-Derived Lactobacillus plantarum with Overproduction of Riboflavin, Related Mechanism, and Food Application. Foods, 2020, 9, 88.	4.3	35
76	Resveratrol alters texture and provides nutritional benefits in whiteâ€salted noodles. International Journal of Food Science and Technology, 2020, 55, 2740-2750.	2.7	0
77	Characterization of morphology and physicochemical properties of native starches isolated from 12 Lycoris species. Food Chemistry, 2020, 316, 126263.	8.2	11
78	Antimicrobial and anticancer applications and related mechanisms of curcumin-mediated photodynamic treatments. Trends in Food Science and Technology, 2020, 97, 341-354.	15.1	73
79	Diversity analysis of starch physicochemical properties in 95 proso millet (Panicum miliaceum L.) accessions. Food Chemistry, 2020, 324, 126863.	8.2	24
80	Novel strategy for enhancing the color intensity of β-Carotene: Enriching onto the oil-water interface. Journal of Colloid and Interface Science, 2020, 573, 215-222.	9.4	9
81	Phenolic profile, antioxidant and antiproliferative activities of diverse peanut cultivars. Journal of Food Measurement and Characterization, 2020, 14, 2361-2369.	3.2	9
82	Phenolic profiles, antioxidant, and antiproliferative activities of turmeric (Curcuma longa). Industrial Crops and Products, 2020, 152, 112561.	5.2	37
83	Electrostatic complexation of β-lactoglobulin aggregates with κ-carrageenan and the resulting emulsifying and foaming properties. Journal of Dairy Science, 2020, 103, 8709-8720.	3.4	13
84	Optimization of kidney bean antioxidants using RSM & ANN and characterization of antioxidant profile by UPLC-QTOF-MS. LWT - Food Science and Technology, 2019, 114, 108321.	5.2	30
85	Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods, 2019, 8, 246.	4.3	399
86	Effect of arabinogalactan protein complex content on emulsification performance of gum arabic. Carbohydrate Polymers, 2019, 224, 115170.	10.2	20
87	Comparative study on foaming and emulsifying properties of different beta-lactoglobulin aggregates. Food and Function, 2019, 10, 5922-5930.	4.6	28
88	Effects of Tannase and Ultrasound Treatment on the Bioactive Compounds and Antioxidant Activity of Green Tea Extract. Antioxidants, 2019, 8, 362.	5.1	33
89	Effects and Mechanisms of Tea and Its Bioactive Compounds for the Prevention and Treatment of Cardiovascular Diseases: An Updated Review. Antioxidants, 2019, 8, 166.	5.1	79
90	Discovery of Antibacterial Dietary Spices That Target Antibiotic-Resistant Bacteria. Microorganisms, 2019, 7, 157.	3.6	19

#	Article	IF	CITATIONS
91	Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods, 2019, 8, 185.	4.3	542

92 Genetic variation in starch physicochemical properties of Chinese foxtail millet (Setaria italica) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702

93	Role of fluid cohesiveness in safe swallowing. Npj Science of Food, 2019, 3, 5.	5.5	94
94	Human oral processing and texture profile analysis parameters: Bridging the gap between the sensory evaluation and the instrumental measurements. Journal of Texture Studies, 2019, 50, 369-380.	2.5	103
95	All-Natural Food-Grade Hydrophilic–Hydrophobic Core–Shell Microparticles: Facile Fabrication Based on Gel-Network-Restricted Antisolvent Method. ACS Applied Materials & Interfaces, 2019, 11, 11936-11946.	8.0	35
96	Ultrasonic Treatment Increases Extraction Rate of Common Bean (Phaseolus vulgaris L.) Antioxidants. Antioxidants, 2019, 8, 83.	5.1	25
97	Comparison of the Phenolic Profiles of Soaked and Germinated Peanut Cultivars via UPLC-QTOF-MS. Antioxidants, 2019, 8, 47.	5.1	21
98	Functional and pizza bake properties of Mozzarella cheese made with konjac glucomannan as a fat replacer. Food Hydrocolloids, 2019, 92, 125-134.	10.7	32
99	Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. International Journal of Molecular Sciences, 2019, 20, 6196.	4.1	190
100	Bioactive compounds and beneficial functions of sprouted grains. , 2019, , 191-246.		46
101	Combined speed and duration of milling affect the physicochemical properties of rice flour. Food		
	Hydrocolloids, 2019, 89, 188-195.	10.7	19
102		10.7 8.2	19 43
102 103	Hydrocolloids, 2019, 89, 188-195. Extraction and characterization of starch granule-associated proteins from rice that affect in vitro		
	Hydrocolloids, 2019, 89, 188-195. Extraction and characterization of starch granule-associated proteins from rice that affect in vitro starch digestibility. Food Chemistry, 2019, 276, 754-760. Effect of Persian gum on whey protein concentrate cold-set emulsion gel: Structure and rheology	8.2	43
103	 Hydrocolloids, 2019, 89, 188-195. Extraction and characterization of starch granule-associated proteins from rice that affect in vitro starch digestibility. Food Chemistry, 2019, 276, 754-760. Effect of Persian gum on whey protein concentrate cold-set emulsion gel: Structure and rheology study. International Journal of Biological Macromolecules, 2019, 125, 17-26. Physicochemical and textural properties of mozzarella cheese made with konjac glucomannan as a fat 	8.2 7.5	43 53
103 104	 Hydrocolloids, 2019, 89, 188-195. Extraction and characterization of starch granule-associated proteins from rice that affect in vitro starch digestibility. Food Chemistry, 2019, 276, 754-760. Effect of Persian gum on whey protein concentrate cold-set emulsion gel: Structure and rheology study. International Journal of Biological Macromolecules, 2019, 125, 17-26. Physicochemical and textural properties of mozzarella cheese made with konjac glucomannan as a fat replacer. Food Research International, 2018, 107, 691-699. Stability, microstructure and rheological behavior of konjac glucomannan-zein mixed systems. 	8.2 7.5 6.2	43 53 45
103 104 105	 Hydrocolloids, 2019, 89, 188-195. Extraction and characterization of starch granule-associated proteins from rice that affect in vitro starch digestibility. Food Chemistry, 2019, 276, 754-760. Effect of Persian gum on whey protein concentrate cold-set emulsion gel: Structure and rheology study. International Journal of Biological Macromolecules, 2019, 125, 17-26. Physicochemical and textural properties of mozzarella cheese made with konjac glucomannan as a fat replacer. Food Research International, 2018, 107, 691-699. Stability, microstructure and rheological behavior of konjac glucomannan-zein mixed systems. Carbohydrate Polymers, 2018, 188, 260-267. Relationships Between Cooking Properties and Physicochemical Properties in Brown and White Rice. 	8.2 7.5 6.2 10.2	43 53 45 42

#	Article	IF	CITATIONS
109	Physicochemical Properties of Mung Bean Starches Isolated From Four Varieties Grown in Sri Lanka. Starch/Staerke, 2018, 70, 1700129.	2.1	13
110	Health Benefits of Bioactive Compounds from the Genus Ilex, a Source of Traditional Caffeinated Beverages. Nutrients, 2018, 10, 1682.	4.1	59
111	Polyphenols in Common Beans (<i>Phaseolus vulgaris</i> L.): Chemistry, Analysis, and Factors Affecting Composition. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 1518-1539.	11.7	101
112	Enhancing antioxidant capacity of Lactobacillus acidophilus-fermented milk fortified with pomegranate peel extracts. Food Bioscience, 2018, 26, 185-192.	4.4	44
113	Impact of cooking conditions on the properties of rice: Combined temperature and cooking time. International Journal of Biological Macromolecules, 2018, 117, 87-94.	7.5	50
114	Polyphenols from selected dietary spices and medicinal herbs differentially affect common food-borne pathogenic bacteria and lactic acid bacteria. Food Control, 2018, 92, 437-443.	5.5	77
115	Separation, Identification, and Bioactivities of the Main Gallotannins of Red Sword Bean (Canavalia) Tj ETQq1 1 C	.784314 r 3.6	$g_{32}^{\rm BT}/{\rm Overloc}$
116	Hot Air Drying Induces Browning and Enhances Phenolic Content and Antioxidant Capacity in Mung Bean (<i>Vigna radiata</i> L.) Sprouts. Journal of Food Processing and Preservation, 2017, 41, e12846.	2.0	23
117	L <i>actobacillus plantarum</i> WCFS1 Fermentation Differentially Affects Antioxidant Capacity and Polyphenol Content in Mung bean (<i>Vigna radiata</i>) and Soya Bean (<i>Glycine max</i>) Milks. Journal of Food Processing and Preservation, 2017, 41, e12944.	2.0	40
118	Stability and phase behavior of konjac glucomannan-milk systems. Food Hydrocolloids, 2017, 73, 30-40.	10.7	33
119	Effects of Fermented Edible Seeds and Their Products on Human Health: Bioactive Components and Bioactivities. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 489-531.	11.7	60
120	Structural characterization and properties of konjac glucomannan and zein blend films. International Journal of Biological Macromolecules, 2017, 105, 1096-1104.	7.5	131
121	Genotypic diversity and environmental stability of starch physicochemical properties in the USDA rice mini-core collection. Food Chemistry, 2017, 221, 1186-1196.	8.2	14
122	Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends in Food Science and Technology, 2017, 59, 1-14.	15.1	238
123	Diversity in Antioxidant Capacity, Phenolic Contents, and Flavonoid Contents of 42 Edible Beans from China. Cereal Chemistry, 2017, 94, 291-297.	2.2	19
124	Association Analysis of Markers Derived from Starch Biosynthesis Related Genes with Starch Physicochemical Properties in the USDA Rice Mini-Core Collection. Frontiers in Plant Science, 2017, 8, 424.	3.6	19
125	Utilization of konjac glucomannan as a fat replacer in low-fat and skimmed yogurt. Journal of Dairy Science, 2016, 99, 7063-7074.	3.4	38
126	Buckwheat and Millet Affect Thermal, Rheological, and Gelling Properties of Wheat Flour. Journal of Food Science, 2016, 81, E627-36.	3.1	27

#	Article	IF	CITATIONS
127	The phenolic composition and antioxidant capacity of soluble and bound extracts in selected dietary spices and medicinal herbs. International Journal of Food Science and Technology, 2016, 51, 565-573.	2.7	47
128	Fermentation alters antioxidant capacity and polyphenol distribution in selected edible legumes. International Journal of Food Science and Technology, 2016, 51, 875-884.	2.7	64
129	Physical stability and rheological properties of konjac glucomannan-ethyl cellulose mixed emulsions. International Journal of Biological Macromolecules, 2016, 92, 423-430.	7.5	23
130	Thermal and Rheological Properties of Mung Bean Starch Blends with Potato, Sweet Potato, Rice, and Sorghum Starches. Food and Bioprocess Technology, 2016, 9, 1408-1421.	4.7	29
131	Sword bean (<i>Canavalia gladiata</i>) as a source of antioxidant phenolics. International Journal of Food Science and Technology, 2016, 51, 156-162.	2.7	25
132	Dynamic changes in phytochemical composition and antioxidant capacity in green and black mung bean (<i>Vigna radiata</i>) sprouts. International Journal of Food Science and Technology, 2016, 51, 2090-2098.	2.7	64
133	Physicochemical and functional properties of <i>Caryota urens</i> flour as compared to wheat flour. International Journal of Food Science and Technology, 2016, 51, 2647-2653.	2.7	11
134	Physicochemical and structural characteristics of starches from Chinese hullâ€less barley cultivars. International Journal of Food Science and Technology, 2016, 51, 509-518.	2.7	37
135	Thermal treatments affect the polyphenol profile and increase antioxidant capacity in five varieties of edible bean milks. International Journal of Food Science and Technology, 2016, 51, 954-961.	2.7	7
136	Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects. LWT - Food Science and Technology, 2016, 73, 168-177.	5.2	76
137	Characterization of konjac glucomannan-ethyl cellulose film formation via microscopy. International Journal of Biological Macromolecules, 2016, 85, 434-441.	7.5	41
138	Carboxymethyl modification of konjac glucomannan affects water binding properties. Carbohydrate Polymers, 2015, 130, 1-8.	10.2	54
139	Adhesion, Cohesion, and Friction Estimated from Combining Cutting and Peeling Test Results for Thin Noodle Sheets. Journal of Food Science, 2015, 80, E370-6.	3.1	12
140	Relationships among Genetic, Structural, and Functional Properties of Rice Starch. Journal of Agricultural and Food Chemistry, 2015, 63, 6241-6248.	5.2	98
141	Preparation and characterization of konjac glucomannan and ethyl cellulose blend films. Food Hydrocolloids, 2015, 44, 229-236.	10.7	83
142	Association mapping of starch physicochemical properties with starch synthesis-related gene markers in nonwaxy rice (Oryza sativa L.). Molecular Breeding, 2014, 34, 1747-1763.	2.1	60
143	Interactions between carboxymethyl konjac glucomannan and soy protein isolate in blended films. Carbohydrate Polymers, 2014, 101, 136-145.	10.2	102
144	Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins. Food Chemistry, 2013, 138, 1153-1161.	8.2	177

#	Article	IF	CITATIONS
145	Association Mapping of Starch Physicochemical Properties with Starch Biosynthesizing Genes in Waxy Rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry, 2013, 61, 10110-10117.	5.2	37
146	Effect of parboiling on the formation of resistant starch, digestibility and functional properties of rice flour from different varieties grown in Sri Lanka. Journal of the Science of Food and Agriculture, 2013, 93, 2723-2729.	3.5	22
147	Influence of acid hydrolysis on thermal and rheological properties of amaranth starches varying in amylose content. Journal of the Science of Food and Agriculture, 2012, 92, 1800-1807.	3.5	33
148	Structures of building blocks in clusters of sweetpotato amylopectin. Carbohydrate Research, 2011, 346, 2913-2925.	2.3	19
149	Potential Application of Spice and Herb Extracts as Natural Preservatives in Cheese. Journal of Medicinal Food, 2011, 14, 284-290.	1.5	103
150	Gelatinization, Pasting, and Gelling Properties of Sweetpotato and Wheat Starch Blends. Cereal Chemistry, 2011, 88, 302-309.	2.2	32
151	Functional, digestibility, and antioxidant properties of brown and polished rice flour from traditional and newâ€improved varieties grown in Sri Lanka. Starch/Staerke, 2011, 63, 485-492.	2.1	25
152	Effect of soil moisture stress from flowering to grain maturity on functional properties of Sri Lankan rice flour. Starch/Staerke, 2011, 63, 283-290.	2.1	16
153	Physicochemical properties of sweetpotato starch. Starch/Staerke, 2011, 63, 249-259.	2.1	80
154	Effect of fertiliser on functional properties of flour from four rice varieties grown in Sri Lanka. Journal of the Science of Food and Agriculture, 2011, 91, 1271-1276.	3.5	27
155	Dietary plant materials reduce acrylamide formation in cookie and starch-based model systems. Journal of the Science of Food and Agriculture, 2011, 91, 2477-2483.	3.5	32
156	Amylopectin internal molecular structure in relation to physical properties of sweetpotato starch. Carbohydrate Polymers, 2011, 84, 907-918.	10.2	87
157	Structures of clusters in sweetpotato amylopectin. Carbohydrate Research, 2011, 346, 1112-1121.	2.3	29
158	Gluten Enhances Cooking, Textural, and Sensory Properties of Oat Noodles. Cereal Chemistry, 2011, 88, 228-233.	2.2	20
159	Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theoretical and Applied Genetics, 2010, 121, 475-487.	3.6	172
160	Molecular marker assisted selection for improvement of the eating, cooking and sensory quality of rice (Oryza sativa L.). Journal of Cereal Science, 2010, 51, 159-164.	3.7	72
161	Compositions of phenolic compounds, amino acids and reducing sugars in commercial potato varieties and their effects on acrylamide formation. Journal of the Science of Food and Agriculture, 2010, 90, 2254-2262.	3.5	73
162	Survey of antioxidant capacity and nutritional quality of selected edible and medicinal fruit plants in Hong Kong. Journal of Food Composition and Analysis, 2010, 23, 510-517.	3.9	50

#	Article	IF	CITATIONS
163	Effect of Î ³ -irradiation on phenolic compounds in rice grain. Food Chemistry, 2010, 120, 74-77.	8.2	87
164	Evaluation of Asian salted noodles in the presence of Amaranthus betacyanin pigments. Food Chemistry, 2010, 118, 663-669.	8.2	38
165	Functional Properties and Retrogradation of Heatâ€Moisture Treated Wheat and Potato Starches in the Presence of Hydroxypropyl β yclodextrin. Starch/Staerke, 2010, 62, 69-77.	2.1	18
166	Rheological properties of starches from grain amaranth and their relationship to starch structure. Starch/Staerke, 2010, 62, 302-308.	2.1	53
167	Antioxidant properties and principal phenolic phytochemicals of Indian medicinal plants from Asclepiadoideae and Periplocoideae. Natural Product Research, 2010, 24, 206-221.	1.8	44
168	Anthocyanins, Hydroxycinnamic Acid Derivatives, and Antioxidant Activity in Roots of Different Chinese Purple-Fleshed Sweetpotato Genotypes. Journal of Agricultural and Food Chemistry, 2010, 58, 7588-7596.	5.2	88
169	Evaluation of the effect of plant extracts and phenolic compounds on reduction of acrylamide in an asparagine/glucose model system by RPâ€HPLCâ€DAD. Journal of the Science of Food and Agriculture, 2009, 89, 1674-1681.	3.5	60
170	Antibacterial and antioxidant effects of five spice and herb extracts as natural preservatives of raw pork. Journal of the Science of Food and Agriculture, 2009, 89, 1879-1885.	3.5	161
171	Fine structure characterization of amylopectins from grain amaranth starch. Carbohydrate Research, 2009, 344, 1701-1708.	2.3	62
172	Rapid identification of gallotannins from Chinese galls by matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight quadrupole ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 1678-1682.	1.5	25
173	Physical properties of Amaranthus starch. Food Chemistry, 2009, 113, 371-376.	8.2	103
174	Effect of phytochemical extracts on the pasting, thermal, and gelling properties of wheat starch. Food Chemistry, 2009, 112, 919-923.	8.2	153
175	Effect of gamma irradiation on the thermal and rheological properties of grain amaranth starch. Radiation Physics and Chemistry, 2009, 78, 954-960.	2.8	56
176	Effects of konjac glucomannan on physicochemical properties of myofibrillar protein and surimi gels from grass carp (Ctenopharyngodon idella). Food Chemistry, 2009, 116, 413-418.	8.2	134
177	Comparison of Major Phenolic Constituents and in Vitro Antioxidant Activity of Diverse Kudingcha Genotypes from Ilex kudingcha, Ilex cornuta, and Ligustrum robustum. Journal of Agricultural and Food Chemistry, 2009, 57, 6082-6089.	5.2	72
178	Effect of Phenolic Compounds on the Pasting and Textural Properties of Wheat Starch. Starch/Staerke, 2008, 60, 609-616.	2.1	49
179	Antibacterial properties of Polygonum cuspidatum roots and their major bioactive constituents. Food Chemistry, 2008, 109, 530-537.	8.2	147
180	Effect of hydroxypropyl β-cyclodextrin on physical properties and transition parameters of amylose–lipid complexes of native and acetylated starches. Food Chemistry, 2008, 108, 14-22.	8.2	27

#	Article	IF	CITATIONS
181	Molecular structure of amylopectin from amaranth starch and its effect on physicochemical properties. International Journal of Biological Macromolecules, 2008, 43, 377-382.	7.5	94
182	Influence of <i>Amaranthus</i> Betacyanin Pigments on the Physical Properties and Color of Wheat Flours. Journal of Agricultural and Food Chemistry, 2008, 56, 8212-8217.	5.2	21
183	Starch Physicochemical Properties and Their Associations with Microsatellite Alleles of Starch-Synthesizing Genes in a Rice RIL Population. Journal of Agricultural and Food Chemistry, 2008, 56, 1589-1594.	5.2	25
184	Comparative Analysis of Bioactivities of Four <i>Polygonum</i> Species. Planta Medica, 2008, 74, 43-49.	1.3	50
185	Gelatinizing, Pasting, and Gelling Properties of Potato and Amaranth Starch Mixtures. Cereal Chemistry, 2007, 84, 22-29.	2.2	30
186	Functional Properties of Hydroxypropylated, Cross-Linked, and Hydroxypropylated Cross-Linked Tuber and Root Starches. Cereal Chemistry, 2007, 84, 30-37.	2.2	84
187	Antibacterial Properties and Major Bioactive Components of Cinnamon Stick (Cinnamomum) Tj ETQq1 1 0.78431 Chemistry, 2007, 55, 5484-5490.	4 rgBT /Ov 5.2	verlock 10 T 290
188	Analysis of genotypic diversity in starch thermal and retrogradation properties in nonwaxy rice. Carbohydrate Polymers, 2007, 67, 174-181.	10.2	36
189	Effect of hydroxypropylation and alkaline treatment in hydroxypropylation on some structural and physicochemical properties of heat-moisture treated wheat, potato and waxy maize starches. Carbohydrate Polymers, 2007, 68, 305-313.	10.2	62
190	Kinetics of hydrolysis and changes in amylose content during preparation of microcrystalline starch from high-amylose maize starches. Carbohydrate Polymers, 2007, 69, 398-405.	10.2	51
191	Thermal, pasting, and gelling properties of wheat and potato starches in the presence of sucrose, glucose, glycerol, and hydroxypropyl β-cyclodextrin. Carbohydrate Polymers, 2007, 70, 112-122.	10.2	123
192	Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chemistry, 2007, 102, 938-953.	8.2	481
193	Anthocyanin characterization and bioactivity assessment of a dark blue grained wheat (Triticum) Tj ETQq1 1 0.78	4314 rgBT 8.2	/Overlock 1
194	The in vitro antibacterial activity of dietary spice and medicinal herb extracts. International Journal of Food Microbiology, 2007, 117, 112-119.	4.7	574
195	A Potential Antioxidant Resource: Endophytic Fungi from Medicinal Plants. Economic Botany, 2007, 61, 14-30.	1.7	196
196	Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity. World Journal of Microbiology and Biotechnology, 2007, 23, 1253-1263.	3.6	111
197	Rapid Identification of Betacyanins fromAmaranthus tricolor,Comphrena globosa, andHylocereus polyrhizusby Matrix-Assisted Laser Desorption/Ionization Quadrupole Ion Trap Time-of-Flight Mass Spectrometry (MALDI-QIT-TOF MS). Journal of Agricultural and Food Chemistry, 2006, 54, 6520-6526.	5.2	40
198	Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sciences, 2006, 78, 2872-2888.	4.3	676

#	Article	IF	CITATIONS
199	Analysis of Genotypic Diversity in the Starch Physicochemical Properties of Nonwaxy Rice: Apparent Amylose Content, Pasting Viscosity and Gel Texture. Starch/Staerke, 2006, 58, 259-267.	2.1	140
200	OPTIMAL COOKING TIME OF NOODLES RELATED TO THEIR NOTCH SENSITIVITY*. Journal of Texture Studies, 2006, 37, 428-441.	2.5	25
201	Protein characteristics of Chinese black-grained wheat. Food Chemistry, 2006, 98, 463-472.	8.2	38
202	Analysis of Genetic Diversity and Relationships in Waxy Rice (Oryza sativa L.) using AFLP and ISSR Markers. Genetic Resources and Crop Evolution, 2006, 53, 323-330.	1.6	25
203	Biting efficiency in relation to incisal angulation. Archives of Oral Biology, 2006, 51, 491-497.	1.8	13
204	Fracture and Energy Partitioning in Uncooked and Cooked Noodles. Materials Research Society Symposia Proceedings, 2006, 975, 1.	0.1	0
205	Effects of Salt and Alkaline Reagents on Dynamic Rheological Properties of Raw Oriental Wheat Noodles. Cereal Chemistry, 2006, 83, 211-217.	2.2	40
206	Quality of dried white salted noodles affected by microbial transglutaminase. Journal of the Science of Food and Agriculture, 2005, 85, 2587-2594.	3.5	77
207	AFLP and RFLP linkage map in Coix. Genetic Resources and Crop Evolution, 2005, 52, 209-214.	1.6	15
208	Antioxidant Capacity of 26 Spice Extracts and Characterization of Their Phenolic Constituents. Journal of Agricultural and Food Chemistry, 2005, 53, 7749-7759.	5.2	1,066
209	Characterization and application of betalain pigments from plants of the Amaranthaceae. Trends in Food Science and Technology, 2005, 16, 370-376.	15.1	192
210	Free Radical Scavenging Properties and Phenolic Content of Chinese Black-Grained Wheat. Journal of Agricultural and Food Chemistry, 2005, 53, 8533-8536.	5.2	137
211	HPLC Characterization of Betalains from Plants in the Amaranthaceae. Journal of Chromatographic Science, 2005, 43, 454-460.	1.4	67
212	Phenolic Antioxidants (Hydrolyzable Tannins, Flavonols, and Anthocyanins) Identified by LC-ESI-MS and MALDI-QIT-TOF MS fromRosa chinensisFlowers. Journal of Agricultural and Food Chemistry, 2005, 53, 9940-9948.	5.2	126
213	Anthocyanins, Flavonols, and Free Radical Scavenging Activity of Chinese Bayberry (Myrica rubra) Extracts and Their Color Properties and Stability. Journal of Agricultural and Food Chemistry, 2005, 53, 2327-2332.	5.2	410
214	Production of Bihon-type Noodles from Maize Starch Differing in Amylose Content. Cereal Chemistry, 2004, 81, 475-480.	2.2	41
215	Analysis of quantitative trait loci for some starch properties of rice (Oryza sativa L.): thermal properties, gel texture and swelling volume. Journal of Cereal Science, 2004, 39, 379-385.	3.7	73
216	Genetic diversity in the physicochemical properties of waxy rice(Oryza sativa L) starch. Journal of the Science of Food and Agriculture, 2004, 84, 1299-1306.	3.5	44

#	Article	IF	CITATIONS
217	Antioxidant Phenolic Constituents in Roots ofRheum officinaleandRubia cordifolia:Â Structureâ^'Radical Scavenging Activity Relationships. Journal of Agricultural and Food Chemistry, 2004, 52, 7884-7890.	5.2	143
218	Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 2004, 74, 2157-2184.	4.3	2,045
219	Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sciences, 2004, 76, 137-149.	4.3	393
220	Effect of Ferulic Acid and Catechin on Sorghum and Maize Starch Pasting Properties. Cereal Chemistry, 2004, 81, 418-422.	2.2	85
221	Oil and Squalene inAmaranthusGrain and Leaf. Journal of Agricultural and Food Chemistry, 2003, 51, 7913-7920.	5.2	106
222	Supercritical Carbon Dioxide Extraction of Oil and Squalene fromAmaranthusGrain. Journal of Agricultural and Food Chemistry, 2003, 51, 7921-7925.	5.2	67
223	Antioxidant Activity of Betalains from Plants of the Amaranthaceae. Journal of Agricultural and Food Chemistry, 2003, 51, 2288-2294.	5.2	497
224	Physical Properties of Octenyl Succinic Anhydride Modified Rice, Wheat, and Potato Starches. Journal of Agricultural and Food Chemistry, 2003, 51, 2283-2287.	5.2	202
225	Diversity of Protein Quality Traits in Iranian Hexaploid Wheat Landraces. Cereal Research Communications, 2003, 31, 193-200.	1.6	1
226	Starch Properties and Functionalities. , 2003, , .		0
226 227	Starch Properties and Functionalities. , 2003, , . Pasting Properties of Î ³ -Irradiated Rice Starches as Affected by pH. Journal of Agricultural and Food Chemistry, 2002, 50, 336-341.	5.2	0 89
	Pasting Properties of Î ³ -Irradiated Rice Starches as Affected by pH. Journal of Agricultural and Food	5.2	
227	Pasting Properties of Î ³ -Irradiated Rice Starches as Affected by pH. Journal of Agricultural and Food Chemistry, 2002, 50, 336-341. Extraction and Purification of Squalene from Amaranthus Grain. Journal of Agricultural and Food		89
227 228	Pasting Properties of Î ³ -Irradiated Rice Starches as Affected by pH. Journal of Agricultural and Food Chemistry, 2002, 50, 336-341. Extraction and Purification of Squalene from Amaranthus Grain. Journal of Agricultural and Food Chemistry, 2002, 50, 368-372. Biochemical changes during storage of sweet potato roots differing in dry matter content.	5.2	89 149
227 228 229	 Pasting Properties of Î³-Irradiated Rice Starches as Affected by pH. Journal of Agricultural and Food Chemistry, 2002, 50, 336-341. Extraction and Purification of Squalene from Amaranthus Grain. Journal of Agricultural and Food Chemistry, 2002, 50, 368-372. Biochemical changes during storage of sweet potato roots differing in dry matter content. Postharvest Biology and Technology, 2002, 24, 317-325. Factor analysis of physicochemical properties of 63 rice varieties. Journal of the Science of Food and 	5.2 6.0	89 149 103
227 228 229 230	 Pasting Properties of Î³-Irradiated Rice Starches as Affected by pH. Journal of Agricultural and Food Chemistry, 2002, 50, 336-341. Extraction and Purification of Squalene from Amaranthus Grain. Journal of Agricultural and Food Chemistry, 2002, 50, 368-372. Biochemical changes during storage of sweet potato roots differing in dry matter content. Postharvest Biology and Technology, 2002, 24, 317-325. Factor analysis of physicochemical properties of 63 rice varieties. Journal of the Science of Food and Agriculture, 2002, 82, 745-752. Physicochemical properties of an elite rice hybrid. Journal of the Science of Food and Agriculture, 	5.2 6.0 3.5	89 149 103 105
227 228 229 230 231	Pasting Properties of Î ³ -Irradiated Rice Starches as Affected by pH. Journal of Agricultural and Food Chemistry, 2002, 50, 336-341. Extraction and Purification of Squalene from Amaranthus Grain. Journal of Agricultural and Food Chemistry, 2002, 50, 368-372. Biochemical changes during storage of sweet potato roots differing in dry matter content. Postharvest Biology and Technology, 2002, 24, 317-325. Factor analysis of physicochemical properties of 63 rice varieties. Journal of the Science of Food and Agriculture, 2002, 82, 745-752. Physicochemical properties of an elite rice hybrid. Journal of the Science of Food and Agriculture, 2002, 82, 1628-1636.	5.2 6.0 3.5 3.5	 89 149 103 105 7

#	Article	IF	CITATIONS
235	Identification and Distribution of Simple and Acylated Betacyanins in the Amaranthaceae. Journal of Agricultural and Food Chemistry, 2001, 49, 1971-1978.	5.2	119
236	Genetic Diversity in Properties of Starch from Zimbabwean Sorghum Landraces. Cereal Chemistry, 2001, 78, 583-589.	2.2	30
237	Quantitative Analysis of Benzyl Modification in Waxy Maize Starch by Fourier Transform (FT) Raman Spectroscopy. Cereal Chemistry, 2001, 78, 629-631.	2.2	5
238	Quantitative Genetic Basis of Gelatinization Temperature of Rice. Cereal Chemistry, 2001, 78, 666-674.	2.2	6
239	Betalains of Celosia argentea. Phytochemistry, 2001, 58, 159-165.	2.9	95
240	Trypsin inhibitor activity in vegetative tissue of sweet potato plants and its response to heat treatment. Journal of the Science of Food and Agriculture, 2001, 81, 1358-1363.	3.5	16
241	Starch properties as affected by sorghum grain chemistry. Journal of the Science of Food and Agriculture, 2001, 81, 245-251.	3.5	97
242	Genetic and Environmental Variation in Sorghum Starch Properties. Journal of Cereal Science, 2001, 34, 261-268.	3.7	60
243	Title is missing!. Genetic Resources and Crop Evolution, 2001, 48, 189-194.	1.6	14
244	Noodle Quality as Related to Sorghum Starch Properties. Cereal Chemistry, 2001, 78, 417-420.	2.2	43
245	Effect of Steeping Treatment on Pasting and Thermal Properties of Sorghum Starches. Cereal Chemistry, 2001, 78, 303-306.	2.2	19
246	Starch Properties of Barnard Red, a South African Red Sorghum Variety of Significance in Traditional African Brewing. Starch/Staerke, 2000, 52, 467-470.	2.1	15
247	Field evaluation of an Amaranthus genetic resource collection in China. Genetic Resources and Crop Evolution, 2000, 47, 43-53.	1.6	37
248	Determination of the Degree of Succinylation in Diverse Modified Starches by Raman Spectroscopy. Journal of Agricultural and Food Chemistry, 2000, 48, 5105-5108.	5.2	24
249	Raman Spectroscopic Determination of the Degree of Succinate in Modified Waxy Maize Starches. Analytical Letters, 1999, 32, 2703-2711.	1.8	8
250	Physical Properties and Enzymatic Digestibility of Phosphorylatedae, wx, and Normal Maize Starch Prepared at Different pH Levels. Cereal Chemistry, 1999, 76, 938-943.	2.2	24
251	Potential Use of Raman Spectroscopy for Determination of Amylose Content in Maize Starch. Cereal Chemistry, 1999, 76, 821-823.	2.2	22
252	Physicochemical Properties of Normal and Waxy Job's Tears (Coix lachryma-jobiL.) Starch. Cereal Chemistry, 1999, 76, 413-416.	2.2	23

#	Article	IF	CITATIONS
253	Effect of Amaranthus and buckwheat proteins on the rheological properties of maize starch. Food Chemistry, 1999, 65, 493-501.	8.2	18
254	Heat-moisture treatment effects on sweetpotato starches differing in amylose content. Food Chemistry, 1999, 65, 339-346.	8.2	123
255	Properties of protein concentrates and hydrolysates from Amaranthus and Buckwheat. Industrial Crops and Products, 1999, 10, 175-183.	5.2	45
256	Physical properties of starch of Asian-adapted potato varieties. Journal of the Science of Food and Agriculture, 1999, 79, 1642-1646.	3.5	24
257	Physical Properties of Cross-linked and Acetylated Normal and Waxy Rice Starch. Starch/Staerke, 1999, 51, 249-252.	2.1	150
258	General Application of Raman Spectroscopy for the Determination of Level of Acetylation in Modified Starches. Cereal Chemistry, 1999, 76, 439-443.	2.2	88
259	Genetic Variation in the Physical Properties of Sweet Potato Starch. Journal of Agricultural and Food Chemistry, 1999, 47, 4195-4201.	5.2	90
260	Functional Properties and Enzymatic Digestibility of Cationic and Cross-Linked Cationicae, wx, and Normal Maize Starch. Journal of Agricultural and Food Chemistry, 1999, 47, 2523-2528.	5.2	25
261	Physicochemical Properties of Maize Starches Expressing Dull and Sugary-2 Mutants in Different Genetic Backgrounds. Journal of Agricultural and Food Chemistry, 1999, 47, 4939-4943.	5.2	22
262	Accurate Estimation of Sweetpotato Amylase Activity by Flour Viscosity Analysis. Journal of Agricultural and Food Chemistry, 1999, 47, 832-835.	5.2	39
263	Time-Dependent Changes in Dough Color in Hexaploid Wheat Landraces Differing in Polyphenol Oxidase Activity. Journal of Agricultural and Food Chemistry, 1999, 47, 3579-3585.	5.2	27
264	Genetic Diversity in Physical Properties of Starch from a World Collection ofAmaranthus. Cereal Chemistry, 1999, 76, 877-883.	2.2	26
265	Raman Spectroscopic Determination of the Degree of Cationic Modification in Waxy Maize Starches. Analytical Letters, 1999, 32, 3049-3058.	1.8	6
266	Protein quality evaluation ofAmaranthus wholemeal flours and protein concentrates. Journal of the Science of Food and Agriculture, 1998, 76, 100-106.	3.5	47
267	Pasting properties of commercial and experimental starch pearls. Carbohydrate Polymers, 1998, 35, 89-96.	10.2	11
268	Characterization and Quantification of Betacyanin Pigments from DiverseAmaranthusSpecies. Journal of Agricultural and Food Chemistry, 1998, 46, 2063-2070.	5.2	122
269	Colorant Properties and Stability ofAmaranthusBetacyanin Pigments. Journal of Agricultural and Food Chemistry, 1998, 46, 4491-4495.	5.2	107
270	Raman Spectroscopic Determination of the Percent of Acetylation in Modified Wheat Starch. Analytical Letters, 1998, 31, 2105-2114.	1.8	21

#	Article	IF	CITATIONS
271	Effect ofAmaranthusand Buckwheat Proteins on Wheat Dough Properties and Noodle Quality. Cereal Chemistry, 1998, 75, 171-176.	2.2	25
272	Diversity of Starch Pasting Properties in Iranian Hexaploid Wheat Landraces. Cereal Chemistry, 1997, 74, 417-423.	2.2	45
273	Properties of Starch Noodles as Affected by Sweetpotato Genotype. Cereal Chemistry, 1997, 74, 182-187.	2.2	85
274	Physicochemical Properties of Common and Tartary Buckwheat Starch. Cereal Chemistry, 1997, 74, 79-82.	2.2	58
275	Genetic Variation in Color of Sweetpotato Flour Related to Its Use in Wheat-Based Composite Flour Products. Cereal Chemistry, 1997, 74, 681-686.	2.2	12
276	An Automated System for the Continuous Measurement of Time-Dependent Changes in Noodle Color. Cereal Chemistry, 1997, 74, 356-358.	2.2	6
277	Characterization and Analysis of North American Triticale Genetic Resources. Crop Science, 1997, 37, 1951-1959.	1.8	27
278	Physical properties and enzymatic digestibility of acetylated ae, wx, and normal maize starch. Carbohydrate Polymers, 1997, 34, 283-289.	10.2	117
279	Factors Affecting the Determination of β-Cyclodextrin by Phenolphthalein Spectrophotometry. Analytical Letters, 1996, 29, 1201-1213.	1.8	11
280	Efficiency of Recrystallization Methods for the Purification of β-Cyclodextrin. Starch/Staerke, 1996, 48, 382-385.	2.1	4
281	Field evaluation of tolerance to salinity stress in Iranian hexaploid wheat landrace accessions. Genetic Resources and Crop Evolution, 1995, 42, 147-156.	1.6	60
282	Physical Properties of Starch from Two Genotypes ofAmaranthus cruentus of Agricultural Significance in China. Starch/Staerke, 1995, 47, 295-297.	2.1	32
283	International symposium and exhibition on new approaches in the production of food stuffs and intermediate products from cereal grains and oil seeds. Trends in Food Science and Technology, 1995, 6, 94-97.	15.1	1
284	American Association of Cereal Chemists' annual meeting. Trends in Food Science and Technology, 1994, 5, 399-401.	15.1	1
285	Effect of Nitrogen Nutrition on Endosperm Protein Synthesis in Wild and Cultivated Barley Grown in Spike Culture. Plant Physiology, 1988, 87, 523-528.	4.8	15
286	Genetic diversity and interâ€relationships of common bean (Phaseolus vulgaris L.) starch traits. Starch/Staerke, 0, , 2100189.	2.1	3
287	Optimization of soluble dietary fiber extraction from hulless barley grass. Cereal Chemistry, 0, , .	2.2	4