List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1295185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theory-screened MOF-based single-atom catalysts for facile and effective therapy of biofilm-induced periodontitis. Chemical Engineering Journal, 2022, 431, 133279.	12.7	31
2	The enhanced photocatalytic sterilization of MOF-Based nanohybrid for rapid and portable therapy of bacteria-infected open wounds. Bioactive Materials, 2022, 13, 200-211.	15.6	47
3	Oxygen Vacanciesâ€Rich Heterojunction of Ti ₃ C ₂ /BiOBr for Photoâ€Excited Antibacterial Textiles. Small, 2022, 18, e2104448.	10.0	31
4	Piezo-Augmented Sonosensitizer with Strong Ultrasound-Propelling Ability for Efficient Treatment of Osteomyelitis. ACS Nano, 2022, 16, 2546-2557.	14.6	56
5	2D Molybdenum Sulfideâ€Based Materials for Photoâ€Excited Antibacterial Application. Advanced Healthcare Materials, 2022, 11, e2200360.	7.6	24
6	Surface photodynamic ion sterilization of ITO-Cu2O/ZnO preventing touch infection. Journal of Materials Science and Technology, 2022, 122, 10-19.	10.7	10
7	Simultaneously enhancing the photocatalytic and photothermal effect of NH2-MIL-125-GO-Pt ternary heterojunction for rapid therapy of bacteria-infected wounds. Bioactive Materials, 2022, 18, 421-432.	15.6	42
8	Ultrasonic Interfacial Engineering of MoS ₂ â€Modified Zn Singleâ€Atom Catalysts for Efficient Osteomyelitis Sonodynamic Ion Therapy. Small, 2022, 18, e2105775.	10.0	43
9	Nanotopography Sequentially Mediates Human Mesenchymal Stem Cell-Derived Small Extracellular Vesicles for Enhancing Osteogenesis. ACS Nano, 2022, 16, 415-430.	14.6	18
10	The highly effective therapy of ovarian cancer by Bismuth-doped oxygen-deficient BaTiO3 with enhanced sono-piezocatalytic effects. Chemical Engineering Journal, 2022, 442, 136380.	12.7	27
11	Reversing Multidrugâ€Resistant <i>Escherichia coli</i> by Compromising Its BAM Biogenesis and Enzymatic Catalysis through Microwave Hyperthermia Therapy. Advanced Functional Materials, 2022, 32, .	14.9	7
12	Microwave assisted antibacterial action of Garcinia nanoparticles on Gram-negative bacteria. Nature Communications, 2022, 13, 2461.	12.8	49
13	Interface Polarization Strengthened Microwave Catalysis of MoS ₂ /FeS/Rhein for the Therapy of Bacteriaâ€Infected Osteomyelitis. Advanced Functional Materials, 2022, 32, .	14.9	26
14	Atomic-layer Fe2O3-modified 2D porphyrinic metal-organic framework for enhanced photocatalytic disinfection through electron-withdrawing effect. Applied Catalysis B: Environmental, 2022, 317, 121701.	20.2	22
15	Photo-controlled degradation of PLGA/Ti3C2 hybrid coating on Mg-Sr alloy using near infrared light. Bioactive Materials, 2021, 6, 568-578.	15.6	30
16	Ag3PO4 decorated black urchin-like defective TiO2 for rapid and long-term bacteria-killing under visible light. Bioactive Materials, 2021, 6, 1575-1587.	15.6	85
17	Ultrasonic Interfacial Engineering of Red Phosphorous–Metal for Eradicating MRSA Infection Effectively. Advanced Materials, 2021, 33, e2006047.	21.0	93
18	Enhanced photocatalytic and photothermal properties of ecofriendly metal-organic framework heterojunction for rapid sterilization. Chemical Engineering Journal, 2021, 405, 126730.	12.7	104

#	Article	IF	CITATIONS
19	Antibacterial Hybrid Hydrogels. Macromolecular Bioscience, 2021, 21, e2000252.	4.1	105
20	Rapid bacterial elimination achieved by sonodynamic Au@Cu ₂ O hybrid nanocubes. Nanoscale, 2021, 13, 15699-15710.	5.6	38
21	Recent Progress in Photocatalytic Antibacterial. ACS Applied Bio Materials, 2021, 4, 3909-3936.	4.6	100
22	The recent progress on metal–organic frameworks for phototherapy. Chemical Society Reviews, 2021, 50, 5086-5125.	38.1	262
23	Photothermal-controlled sustainable degradation of protective coating modified Mg alloy using near-infrared light. Rare Metals, 2021, 40, 2538-2551.	7.1	14
24	Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing. Nature Communications, 2021, 12, 1224.	12.8	283
25	Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration. Science Advances, 2021, 7, .	10.3	176
26	Na+ inserted metal-organic framework for rapid therapy of bacteria-infected osteomyelitis through microwave strengthened Fenton reaction and thermal effects. Nano Today, 2021, 37, 101090.	11.9	77
27	Single-Atom Catalysis for Efficient Sonodynamic Therapy of Methicillin-Resistant <i>Staphylococcus aureus</i> -Infected Osteomyelitis. ACS Nano, 2021, 15, 10628-10639.	14.6	144
28	Enhanced Nearâ€infrared Photocatalytic Eradication of MRSA Biofilms and Osseointegration Using Oxide Perovskiteâ€Based P–N Heterojunction. Advanced Science, 2021, 8, e2002211.	11.2	33
29	Graphitic carbon nitride-based materials for photocatalytic antibacterial application. Materials Science and Engineering Reports, 2021, 145, 100610.	31.8	145
30	2D MOF Periodontitis Photodynamic Ion Therapy. Journal of the American Chemical Society, 2021, 143, 15427-15439.	13.7	161
31	Photo-Sono Interfacial Engineering Exciting the Intrinsic Property of Herbal Nanomedicine for Rapid Broad-Spectrum Bacteria Killing. ACS Nano, 2021, 15, 18505-18519.	14.6	61
32	Self-activating anti-infection implant. Nature Communications, 2021, 12, 6907.	12.8	77
33	Photo-responsive chitosan/Ag/MoS2 for rapid bacteria-killing. Journal of Hazardous Materials, 2020, 383, 121122.	12.4	153
34	Modulation of the mechanosensing of mesenchymal stem cells by laser-induced patterning for the acceleration of tissue reconstruction through the Wnt/β-catenin signaling pathway activation. Acta Biomaterialia, 2020, 101, 152-167.	8.3	51
35	Zn2+-assisted photothermal therapy for rapid bacteria-killing using biodegradable humic acid encapsulated MOFs. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110781.	5.0	41
36	Ultrafast Low-Temperature Photothermal Therapy Activates Autophagy and Recovers Immunity for Efficient Antitumor Treatment. ACS Applied Materials & Interfaces, 2020, 12, 4265-4275.	8.0	48

#	Article	IF	CITATIONS
37	Eco-friendly Hybrids of Carbon Quantum Dots Modified MoS ₂ for Rapid Microbial Inactivation by Strengthened Photocatalysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 534-542.	6.7	53
38	Photoresponsive Materials for Antibacterial Applications. Cell Reports Physical Science, 2020, 1, 100245.	5.6	102
39	Photoelectrons Mediating Angiogenesis and Immunotherapy through Heterojunction Film for Noninvasive Disinfection. Advanced Science, 2020, 7, 2000023.	11.2	51
40	Treatment of MRSA-infected osteomyelitis using bacterial capturing, magnetically targeted composites with microwave-assisted bacterial killing. Nature Communications, 2020, 11, 4446.	12.8	165
41	The rapid photoresponsive bacteria-killing of Cu-doped MoS ₂ . Biomaterials Science, 2020, 8, 4216-4224.	5.4	57
42	Enhanced osteogenesis and therapy of osteoporosis using simvastatin loaded hybrid system. Bioactive Materials, 2020, 5, 348-357.	15.6	33
43	Overcoming Multidrugâ€Resistant MRSA Using Conventional Aminoglycoside Antibiotics. Advanced Science, 2020, 7, 1902070.	11.2	49
44	Rapid and highly effective bacteria-killing by polydopamine/IR780@MnO2–Ti using near-infrared light. Progress in Natural Science: Materials International, 2020, 30, 677-685.	4.4	12
45	Near-Infrared Light Triggered Phototherapy and Immunotherapy for Elimination of Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilm Infection on Bone Implant. ACS Nano, 2020, 14, 8157-8170.	14.6	133
46	Ce and Er Co-doped TiO2 for rapid bacteria- killing using visible light. Bioactive Materials, 2020, 5, 201-209.	15.6	61
47	Visible light responsive CuS/ protonated g-C3N4 heterostructure for rapid sterilization. Journal of Hazardous Materials, 2020, 393, 122423.	12.4	116
48	In-situ sulfuration of Cu-based metal-organic framework for rapid near-infrared light sterilization. Journal of Hazardous Materials, 2020, 390, 122126.	12.4	72
49	Rapid Photo-Sonotherapy for Clinical Treatment of Bacterial Infected Bone Implants by Creating Oxygen Deficiency Using Sulfur Doping. ACS Nano, 2020, 14, 2077-2089.	14.6	182
50	Controllable biodegradation and enhanced osseointegration of ZrO2-nanofilm coated Zn-Li alloy: In vitro and in vivo studies. Acta Biomaterialia, 2020, 105, 290-303.	8.3	47
51	Rapid Sterilization by Photocatalytic Ag ₃ PO ₄ /î±-Fe ₂ O ₃ Composites Using Visible Light. ACS Sustainable Chemistry and Engineering, 2020, 8, 2577-2585.	6.7	53
52	Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds. Chemical Engineering Journal, 2020, 396, 125194.	12.7	142
53	Engineered probiotics biofilm enhances osseointegration via immunoregulation and anti-infection. Science Advances, 2020, 6, .	10.3	82
54	Lysozyme-Assisted Photothermal Eradication of Methicillin-Resistant <i>Staphylococcus aureus</i> Infection and Accelerated Tissue Repair with Natural Melanosome Nanostructures. ACS Nano, 2019, 13, 11153-11167.	14.6	74

#	Article	IF	CITATIONS
55	Dual Metal–Organic Framework Heterointerface. ACS Central Science, 2019, 5, 1591-1601.	11.3	108
56	Ag ₂ S@WS ₂ Heterostructure for Rapid Bacteria-Killing Using Near-Infrared Light. ACS Sustainable Chemistry and Engineering, 2019, 7, 14982-14990.	6.7	67
57	<p>Gold nanoparticles-loaded hydroxyapatite composites guide osteogenic differentiation of human mesenchymal stem cells through Wnt/β-catenin signaling pathway</p> . International Journal of Nanomedicine, 2019, Volume 14, 6151-6163.	6.7	44
58	Highly Effective and Noninvasive Nearâ€Infrared Eradication of a <i>Staphylococcus aureus</i> Biofilm on Implants by a Photoresponsive Coating within 20 Min. Advanced Science, 2019, 6, 1900599.	11.2	212
59	Superimposed surface plasma resonance effect enhanced the near-infrared photocatalytic activity of Au@Bi2WO6 coating for rapid bacterial killing. Journal of Hazardous Materials, 2019, 380, 120818.	12.4	85
60	Accelerated Bone Regeneration by Gold-Nanoparticle-Loaded Mesoporous Silica through Stimulating Immunomodulation. ACS Applied Materials & Interfaces, 2019, 11, 41758-41769.	8.0	73
61	Photoelectric-Responsive Extracellular Matrix for Bone Engineering. ACS Nano, 2019, 13, 13581-13594.	14.6	51
62	Rapid Biofilm Elimination on Bone Implants Using Nearâ€Infraredâ€Activated Inorganic Semiconductor Heterostructures. Advanced Healthcare Materials, 2019, 8, e1900835.	7.6	71
63	AgBr Nanoparticles in Situ Growth on 2D MoS ₂ Nanosheets for Rapid Bacteria-Killing and Photodisinfection. ACS Applied Materials & Interfaces, 2019, 11, 34364-34375.	8.0	58
64	Micro- and Nanohemispherical 3D Imprints Modulate the Osteogenic Differentiation and Mineralization Tendency of Bone Cells. ACS Applied Materials & Interfaces, 2019, 11, 35513-35524.	8.0	16
65	Zinc-doped Prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds. Nature Communications, 2019, 10, 4490.	12.8	306
66	Longâ€Term Prevention of Bacterial Infection and Enhanced Osteoinductivity of a Hybrid Coating with Selective Silver Toxicity. Advanced Healthcare Materials, 2019, 8, e1801465.	7.6	53
67	The enhanced photocatalytic properties of MnO2/g-C3N4 heterostructure for rapid sterilization under visible light. Journal of Hazardous Materials, 2019, 377, 227-236.	12.4	122
68	Local Photothermal/Photodynamic Synergistic Therapy by Disrupting Bacterial Membrane To Accelerate Reactive Oxygen Species Permeation and Protein Leakage. ACS Applied Materials & Interfaces, 2019, 11, 17902-17914.	8.0	149
69	Rapid and Superior Bacteria Killing of Carbon Quantum Dots/ZnO Decorated Injectable Folic Acidâ€Conjugated PDA Hydrogel through Dualâ€Light Triggered ROS and Membrane Permeability. Small, 2019, 15, e1900322.	10.0	180
70	Osseointegration: Longâ€Term Prevention of Bacterial Infection and Enhanced Osteoinductivity of a Hybrid Coating with Selective Silver Toxicity (Adv. Healthcare Mater. 5/2019). Advanced Healthcare Materials, 2019, 8, 1970020.	7.6	4
71	Eradicating Multidrugâ€Resistant Bacteria Rapidly Using a Multi Functional g ₃ N ₄ @ Bi ₂ S ₃ Nanorod Heterojunction with or without Antibiotics. Advanced Functional Materials, 2019, 29, 1900946.	14.9	136
72	Photocatalysis: Lightâ€Activated Rapid Disinfection by Accelerated Charge Transfer in Red Phosphorus/ZnO Heterointerface (Small Methods 3/2019). Small Methods, 2019, 3, 1970008.	8.6	4

#	Article	IF	CITATIONS
73	Rapid and Highly Effective Noninvasive Disinfection by Hybrid Ag/CS@MnO ₂ Nanosheets Using Near-Infrared Light. ACS Applied Materials & Interfaces, 2019, 11, 15014-15027.	8.0	86
74	Lightâ€Activated Rapid Disinfection by Accelerated Charge Transfer in Red Phosphorus/ZnO Heterointerface. Small Methods, 2019, 3, 1900048.	8.6	64
75	"lmitative―click chemistry to form a sticking xerogel for the portable therapy of bacteria-infected wounds. Biomaterials Science, 2019, 7, 5383-5387.	5.4	17
76	A facile fabrication of novel stuff with antibacterial property and osteogenic promotion utilizing red phosphorus and near-infrared light. Bioactive Materials, 2019, 4, 17-21.	15.6	108
77	Repeatable Photodynamic Therapy with Triggered Signaling Pathways of Fibroblast Cell Proliferation and Differentiation To Promote Bacteria-Accompanied Wound Healing. ACS Nano, 2018, 12, 1747-1759.	14.6	303
78	In Situ Disinfection through Photoinspired Radical Oxygen Species Storage and Thermalâ€īriggered Release from Black Phosphorous with Strengthened Chemical Stability. Small, 2018, 14, 1703197.	10.0	127
79	Infection-prevention on Ti implants by controlled drug release from folic acid/ZnO quantum dots sealed titania nanotubes. Materials Science and Engineering C, 2018, 85, 214-224.	7.3	68
80	Electrophoretic Deposited Stable Chitosan@MoS ₂ Coating with Rapid In Situ Bacteriaâ€Killing Ability under Dual‣ight Irradiation. Small, 2018, 14, e1704347.	10.0	171
81	Nano Ag/ZnO-Incorporated Hydroxyapatite Composite Coatings: Highly Effective Infection Prevention and Excellent Osteointegration. ACS Applied Materials & amp; Interfaces, 2018, 10, 1266-1277.	8.0	127
82	Rapid Sterilization and Accelerated Wound Healing Using Zn ²⁺ and Graphene Oxide Modified g ₃ N ₄ under Dual Light Irradiation. Advanced Functional Materials, 2018, 28, 1800299.	14.9	246
83	Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomaterialia, 2018, 77, 352-364.	8.3	180
84	Tuning the Bandgap of Photo-Sensitive Polydopamine/Ag ₃ PO ₄ /Graphene Oxide Coating for Rapid, Noninvasive Disinfection of Implants. ACS Central Science, 2018, 4, 724-738.	11.3	227
85	Rapid Biofilm Eradication on Bone Implants Using Red Phosphorus and Nearâ€Infrared Light. Advanced Materials, 2018, 30, e1801808.	21.0	364
86	Construction of N-halamine labeled silica/zinc oxide hybrid nanoparticles for enhancing antibacterial ability of Ti implants. Materials Science and Engineering C, 2017, 76, 50-58.	7.3	37
87	Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. Bioactive Materials, 2017, 2, 44-50.	15.6	54
88	Construction of poly(lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility. Materials Science and Engineering C, 2017, 79, 629-637.	7.3	82
89	Porous Iron-Carboxylate Metal–Organic Framework: A Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity. ACS Applied Materials & Interfaces, 2017, 9, 19248-19257.	8.0	123
90	Atomic layer deposited ZrO2 nanofilm on Mg-Sr alloy for enhanced corrosion resistance and biocompatibility. Acta Biomaterialia, 2017, 58, 515-526.	8.3	80

Metal Ion Coordination Polymer-Capped pH-Triggered Drug Release System on Titania Nanotubes for Enhancing Self-antibacterial Capability of Ti Implants. ACS Biomaterials Science and Engineering, 2017, 5.2 3, 816-825.	74
The controlled drug release by pH-sensitive molecularly imprinted nanospheres for enhanced	
⁹² antibacterial activity. Materials Science and Engineering C, 2017, 77, 84-91. 7.3	45
Construction of poly (vinyl alcohol)/poly (lactide-glycolide acid)/vancomycin nanoparticles on titanium for enhancing the surface self-antibacterial activity and cytocompatibility. Colloids and 5.0 Surfaces B: Biointerfaces, 2017, 151, 165-177.	73
Balancing Bacteria–Osteoblast Competition through Selective Physical Puncture and 94 Biofunctionalization of ZnO/Polydopamine/Arginine-Glycine-Aspartic Acid-Cysteine Nanorods. ACS 14.6 Nano, 2017, 11, 11250-11263.	230
 Tannic Acid/Fe³⁺/Ag Nanofilm Exhibiting Superior Photodynamic and Physical Antibacterial Activity. ACS Applied Materials & amp; Interfaces, 2017, 9, 39657-39671. 	76
Photo-Inspired Antibacterial Activity and Wound Healing Acceleration by Hydrogel Embedded with Ag/Ag@AgCl/ZnO Nanostructures. ACS Nano, 2017, 11, 9010-9021.	591
97 Synergistic Bacteria Killing through Photodynamic and Physical Actions of Graphene 97 Oxide/Ag/Collagen Coating. ACS Applied Materials & amp; Interfaces, 2017, 9, 26417-26428.	223
98Dopamine Modified Organic–Inorganic Hybrid Coating for Antimicrobial and Osteogenesis. ACS Applied Materials & amp; Interfaces, 2016, 8, 33972-33981.8.0	141
99 Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to 8.3 surface. Acta Biomaterialia, 2016, 45, 2-30.	306
100The modulation of stem cell behaviors by functionalized nanoceramic coatings on Ti-based implants.15.6Bioactive Materials, 2016, 1, 65-76.15.6	25
101 Biomedical Applications of Functionalized ZnO Nanomaterials: from Biosensors to Bioimaging. 3.7 Advanced Materials Interfaces, 2016, 3, 1500494.	138
102Antibacterial Activity of Silver Doped Titanate Nanowires on Ti Implants. ACS Applied Materials & amp; Interfaces, 2016, 8, 16584-16594.8.0	102
103Controlled chondrogenesis from adipose-derived stem cells by recombinant transforming growth factor-l²3 fusion protein in peptide scaffolds. Acta Biomaterialia, 2015, 11, 191-203.8.3	31
Nanomaterials: Functionalized TiO2Based Nanomaterials for Biomedical Applications (Adv. Funct.) Tj ETQq0 0 0 rgBT /0 14.9	verlock 10 Tf 50
105Functionalized TiO ₂ Based Nanomaterials for Biomedical Applications. Advanced14.9105Functional Materials, 2014, 24, 5464-5481.14.9	208
106Nanostructured TiO2 for energy conversion and storage. RSC Advances, 2013, 3, 24758.3.6	105

	_	
F		ΔN
		/ \

#	Article	IF	CITATIONS
109	Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds. Biomaterials, 2011, 32, 330-338.	11.4	103