Charles S Craik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1295173/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583, 459-468.	27.8	3,542
2	Structural basis of substrate specificity in the serine proteases. Protein Science, 1995, 4, 337-360.	7.6	726
3	Global landscape of HIV–human protein complexes. Nature, 2012, 481, 365-370.	27.8	651
4	The Androgen-Regulated Protease TMPRSS2 Activates a Proteolytic Cascade Involving Components of the Tumor Microenvironment and Promotes Prostate Cancer Metastasis. Cancer Discovery, 2014, 4, 1310-1325.	9.4	389
5	Cellular Localization of Membrane-type Serine Protease 1 and Identification of Protease-activated Receptor-2 and Single-chain Urokinase-type Plasminogen Activator as Substrates. Journal of Biological Chemistry, 2000, 275, 26333-26342.	3.4	377
6	Substrate Profiling of Cysteine Proteases Using a Combinatorial Peptide Library Identifies Functionally Unique Specificities. Journal of Biological Chemistry, 2006, 281, 12824-12832.	3.4	370
7	Vif hijacks CBF-Î ² to degrade APOBEC3G and promote HIV-1 infection. Nature, 2012, 481, 371-375.	27.8	312
8	Cryo-EM structures of the TMEM16A calcium-activated chloride channel. Nature, 2017, 552, 426-429.	27.8	274
9	Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin. Nature Biotechnology, 2000, 18, 187-193.	17.5	247
10	Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature, 2016, 530, 233-236.	27.8	208
11	A primary determinant for lipoxygenase positional specificity. Nature, 1991, 354, 149-152.	27.8	197
12	Proteases as therapeutics. Biochemical Journal, 2011, 435, 1-16.	3.7	188
13	Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17735-17740.	7.1	183
14	Hepatocyte growth factor is a preferred in vitro substrate for human hepsin, a membrane-anchored serine protease implicated in prostate and ovarian cancers. Biochemical Journal, 2005, 390, 125-136.	3.7	178
15	Discovery of Reactive Microbiota-Derived Metabolites that Inhibit Host Proteases. Cell, 2017, 168, 517-526.e18.	28.9	173
16	Structural determinants of specificity in the cysteine protease cruzain. Protein Science, 1997, 6, 1603-1611.	7.6	169
17	Fabs Enable Single Particle cryoEM Studies of Small Proteins. Structure, 2012, 20, 582-592.	3.3	154
18	A plasma kallikrein-dependent plasminogen cascade required for adipocyte differentiation. Nature Cell Biology, 2001, 3, 267-275.	10.3	150

#	Article	IF	CITATIONS
19	Intron–exon splice junctions map at protein surfaces. Nature, 1982, 299, 180-182.	27.8	149
20	Selective Chemical Functional Probes of Granzymes A and B Reveal Granzyme B Is a Major Effector of Natural Killer Cell-Mediated Lysis of Target Cells. Chemistry and Biology, 2005, 12, 567-577.	6.0	144
21	Global identification of peptidase specificity by multiplex substrate profiling. Nature Methods, 2012, 9, 1095-1100.	19.0	144
22	Expedient Solid-Phase Synthesis of Fluorogenic Protease Substrates Using the 7-Amino-4-carbamoylmethylcoumarin (ACC) Fluorophore. Journal of Organic Chemistry, 2002, 67, 910-915.	3.2	140
23	Specificity Profiling of Seven Human Tissue Kallikreins Reveals Individual Subsite Preferences. Journal of Biological Chemistry, 2006, 281, 25678-25688.	3.4	132
24	Site-directed mutagenesis shows that tyrosine 248 of carboxypeptidase A does not play a crucial role in catalysis. Nature, 1985, 317, 551-555.	27.8	130
25	Global Substrate Profiling of Proteases in Human Neutrophil Extracellular Traps Reveals Consensus Motif Predominantly Contributed by Elastase. PLoS ONE, 2013, 8, e75141.	2.5	125
26	Subnanometre-resolution electron cryomicroscopy structure of a heterodimeric ABC exporter. Nature, 2015, 517, 396-400.	27.8	114
27	Imaging PD-L1 Expression with ImmunoPET. Bioconjugate Chemistry, 2018, 29, 96-103.	3.6	109
28	Synthetic "interface―peptides alter dimeric assembly of the HIV 1 and 2 proteases. Protein Science, 1992, 1, 1244-1253.	7.6	99
29	Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2001-10.	7.1	99
30	The structure of the pro-apoptotic protease granzyme B reveals the molecular determinants of its specificity. Nature Structural Biology, 2000, 7, 762-765.	9.7	93
31	Intracellular Action of a Secreted Peptide Required for Fungal Virulence. Cell Host and Microbe, 2016, 19, 849-864.	11.0	93
32	Coordinate expression and functional profiling identify an extracellular proteolytic signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5771-5776.	7.1	89
33	Isolation and characterization of cDNAs from Atlantic cod encoding two different forms of trypsinogen. FEBS Journal, 1993, 217, 1091-1097.	0.2	86
34	Targeting uPAR with Antagonistic Recombinant Human Antibodies in Aggressive Breast Cancer. Cancer Research, 2013, 73, 2070-2081.	0.9	83
35	Viral Proteases: Evolution of Diverse Structural Motifs to Optimize Function. Cell, 1997, 91, 427-430.	28.9	80
36	Cullin E3 Ligases and Their Rewiring by Viral Factors. Biomolecules, 2014, 4, 897-930.	4.0	78

#	Article	IF	CITATIONS
37	Inhibition of a viral enzyme by a small-molecule dimer disruptor. Nature Chemical Biology, 2009, 5, 640-646.	8.0	77
38	Characterising proteolysis during SARS-CoV-2 infection identifies viral cleavage sites and cellular targets with therapeutic potential. Nature Communications, 2021, 12, 5553.	12.8	76
39	Bile pigments as HIV-1 protease inhibitors and their effects on HIV-1 viral maturation and infectivity <i>in vitro</i> . Biochemical Journal, 1996, 320, 681-686.	3.7	73
40	Destructin-1 is a collagen-degrading endopeptidase secreted by <i>Pseudogymnoascus destructans</i> , the causative agent of white-nose syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7478-7483.	7.1	68
41	Structural insight into SARS-CoV-2 neutralizing antibodies and modulation of syncytia. Cell, 2021, 184, 3192-3204.e16.	28.9	68
42	Isolation of a High Affinity Inhibitor of Urokinase-type Plasminogen Activator by Phage Display of Ecotin. Journal of Biological Chemistry, 1995, 270, 12250-12256.	3.4	67
43	Immunoproteasome functions explained by divergence in cleavage specificity and regulation. ELife, 2017, 6, .	6.0	66
44	Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients. ELife, 2020, 9, .	6.0	66
45	Global Identification of Biofilm-Specific Proteolysis in Candida albicans. MBio, 2016, 7, .	4.1	63
46	Prediction of protease substrates using sequence and structure features. Bioinformatics, 2010, 26, 1714-1722.	4.1	61
47	Engineering of a macromolecular scaffold to develop specific protease inhibitors. Nature Biotechnology, 2003, 21, 1063-1068.	17.5	59
48	Determining Proteinâ^'Protein Interactions by Oxidative Cross-Linking of a Glycine-Glycine-Histidine Fusion Proteinâ€. Biochemistry, 1998, 37, 4397-4406.	2.5	55
49	Structure of an Fab–Protease Complex Reveals a Highly Specific Non-canonical Mechanism of Inhibition. Journal of Molecular Biology, 2008, 380, 351-360.	4.2	55
50	Specificity for latent C termini links the E3 ubiquitin ligase CHIP to caspases. Nature Chemical Biology, 2019, 15, 786-794.	8.0	54
51	A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	54
52	An expression system for trypsin. Journal of Cellular Biochemistry, 1989, 39, 265-276.	2.6	53
53	Ecotin: a serine protease inhibitor with two distinct and interacting binding sites. Journal of Molecular Biology, 1998, 279, 945-957.	4.2	52
54	Progranulin Stimulates the In Vitro Maturation of Pro-Cathepsin D at Acidic pH. Journal of Molecular Biology, 2019, 431, 1038-1047.	4.2	52

#	Article	IF	CITATIONS
55	Antagonistic Anti-urokinase Plasminogen Activator Receptor (uPAR) Antibodies Significantly Inhibit uPAR-mediated Cellular Signaling and Migration. Journal of Biological Chemistry, 2010, 285, 26878-26888.	3.4	51
56	Communication between the active sites and dimer interface of a herpesvirus protease revealed by a transition-state inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6870-6875.	7.1	47
57	Active Plasma Kallikrein Localizes to Mast Cells and Regulates Epithelial Cell Apoptosis, Adipocyte Differentiation, and Stromal Remodeling during Mammary Gland Involution. Journal of Biological Chemistry, 2009, 284, 13792-13803.	3.4	45
58	Design of Selective Substrates and Activity-Based Probes for Hydrolase Important for Pathogenesis 1 (HIP1) from <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2016, 2, 807-815.	3.8	45
59	Structural features of a snake venom thrombin-like enzyme: thrombin and trypsin on a single catalytic platform?. BBA - Proteins and Proteomics, 2001, 1547, 183-195.	2.1	44
60	Why recombinant antibodies — benefits and applications. Current Opinion in Biotechnology, 2019, 60, 153-158.	6.6	44
61	Structural Basis for the Broad Substrate Specificity of Fiddler Crab Collagenolytic Serine Protease 1â€. Biochemistry, 1997, 36, 5393-5401.	2.5	43
62	Label-Free Electrical Detection of Enzymatic Reactions in Nanochannels. ACS Nano, 2016, 10, 7476-7484.	14.6	42
63	The role of ecotin dimerization in protease inhibition. Journal of Molecular Biology, 2001, 308, 975-991.	4.2	41
64	Imaging a functional tumorigenic biomarker in the transformed epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 93-98.	7.1	41
65	Mapping the catalytic conformations of an assembly-line polyketide synthase module. Science, 2021, 374, 729-734.	12.6	41
66	Calcium-free calmodulin is a substrate of proteases from human immunodeficiency viruses 1 and 2. Proteins: Structure, Function and Bioinformatics, 1991, 10, 1-9.	2.6	40
67	Structural requirements for the collagenase and elastase activity of cathepsin K and its selective inhibition by an exosite inhibitor. Biochemical Journal, 2015, 465, 163-173.	3.7	40
68	1.59 Ã structure of trypsin at 120 K: Comparison of low temperature and room temperature structures. Proteins: Structure, Function and Bioinformatics, 1991, 10, 171-187.	2.6	39
69	Functional Consequences of the Kaposi's Sarcoma-Associated Herpesvirus Protease Structure: Regulation of Activity and Dimerization by Conserved Structural Elements,. Biochemistry, 2000, 39, 12796-12803.	2.5	39
70	Non-invasive imaging and cellular tracking of pulmonary emboli by near-infrared fluorescence and positron-emission tomography. Nature Communications, 2015, 6, 8448.	12.8	37
71	Global Protease Activity Profiling Provides Differential Diagnosis of Pancreatic Cysts. Clinical Cancer Research, 2017, 23, 4865-4874.	7.0	37
72	A Preclinical Assessment of ⁸⁹ Zr-atezolizumab Identifies a Requirement for Carrier Added Formulations Not Observed with ⁸⁹ Zr-C4. Bioconjugate Chemistry, 2018, 29, 3476-3482.	3.6	37

#	Article	IF	CITATIONS
73	Structure–Function Analysis of the Extended Conformation of a Polyketide Synthase Module. Journal of the American Chemical Society, 2018, 140, 6518-6521.	13.7	37
74	Sensitive and Selective Plasmon Ruler Nanosensors for Monitoring the Apoptotic Drug Response in Leukemia. ACS Nano, 2014, 8, 9199-9208.	14.6	36
75	Global substrate specificity profiling of postâ€ŧranslational modifying enzymes. Protein Science, 2018, 27, 584-594.	7.6	36
76	Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence. PLoS Pathogens, 2016, 12, e1006051.	4.7	36
77	Enzyme Inhibition by Allosteric Capture of an Inactive Conformation. Journal of Molecular Biology, 2011, 411, 999-1016.	4.2	34
78	Combination of Antifungal Drugs and Protease Inhibitors Prevent Candida albicans Biofilm Formation and Disrupt Mature Biofilms. Frontiers in Microbiology, 2020, 11, 1027.	3.5	34
79	Matriptase activation connects tissue factor–dependent coagulation initiation to epithelial proteolysis and signaling. Blood, 2016, 127, 3260-3269.	1.4	33
80	Rapid identification of recombinant Fabs that bind to membrane proteins. Methods, 2011, 55, 303-309.	3.8	31
81	Substrate Specificity of MarP, a Periplasmic Protease Required for Resistance to Acid and Oxidative Stress in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2013, 288, 12489-12499.	3.4	31
82	Imaging the Urokinase Plasminongen Activator Receptor in Preclinical Breast Cancer Models of Acquired Drug Resistance. Theranostics, 2014, 4, 267-279.	10.0	31
83	Excretion/secretion products from Schistosoma mansoni adults, eggs and schistosomula have unique peptidase specificity profiles. Biochimie, 2016, 122, 99-109.	2.6	31
84	Predicting CD4 T-cell epitopes based on antigen cleavage, MHCII presentation, and TCR recognition. PLoS ONE, 2018, 13, e0206654.	2.5	31
85	Characterization of Structural Determinants of Granzyme B Reveals Potent Mediators of Extended Substrate Specificity. Journal of Biological Chemistry, 2004, 279, 30751-30759.	3.4	30
86	In Vivo Measurement of Granzyme Proteolysis from Activated Immune Cells with PET. ACS Central Science, 2021, 7, 1638-1649.	11.3	30
87	Characterization of a multimeric, eukaryotic prolyl aminopeptidase: an inducible and highly specific intracellular peptidase from the non-pathogenic fungus Talaromyces emersonii. Microbiology (United) Tj ETQq1	1 0 .7 8431	4 æ8T /Over
88	Structure-Function Analyses of Human Kallikrein-related Peptidase 2 Establish the 99-Loop as Master Regulator of Activity. Journal of Biological Chemistry, 2014, 289, 34267-34283.	3.4	28
89	Substrate Profiling and High Resolution Co-complex Crystal Structure of a Secreted C11 Protease Conserved across Commensal Bacteria. ACS Chemical Biology, 2017, 12, 1556-1565.	3.4	27
90	SmSP2: A serine protease secreted by the blood fluke pathogen Schistosoma mansoni with anti-hemostatic properties. PLoS Neglected Tropical Diseases, 2018, 12, e0006446.	3.0	26

#	Article	IF	CITATIONS
91	Recombinant HIV1 protease secreted bySaccharomyces cerevisiae correctly processes myristylatedgag polyprotein. Proteins: Structure, Function and Bioinformatics, 1989, 6, 324-337.	2.6	25
92	Imaging Active Urokinase Plasminogen Activator in Prostate Cancer. Cancer Research, 2015, 75, 1225-1235.	0.9	25
93	Synthesis and mechanistic evaluation of novel N '-benzylidene-carbohydrazide-1 H -pyrazolo[3,4 -b]pyridine derivatives as non-anionic antiplatelet agents. European Journal of Medicinal Chemistry, 2017, 135, 213-229.	5.5	25
94	Platform to Discover Protease-Activated Antibiotics and Application to Siderophore–Antibiotic Conjugates. Journal of the American Chemical Society, 2020, 142, 21310-21321.	13.7	25
95	Induced structure of a helical switch as a mechanism to regulate enzymatic activity. Nature Structural and Molecular Biology, 2005, 12, 1019-1020.	8.2	24
96	InÂvivo imaging of protease activity by Probody therapeutic activation. Biochimie, 2016, 122, 62-67.	2.6	24
97	Biochemical Basis for Distinct Roles of the Heterochromatin Proteins Swi6 and Chp2. Journal of Molecular Biology, 2017, 429, 3666-3677.	4.2	24
98	Scanning the prime-Site substrate specificity of proteolytic enzymes: A novel assay based on ligand-Enhanced lanthanide ion fluorescence. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3619-3623.	2.2	22
99	Current and Potential Treatments for Ubiquitous but Neglected Herpesvirus Infections. Chemical Reviews, 2014, 114, 11382-11412.	47.7	22
100	Discovery of Selective Matriptase and Hepsin Serine Protease Inhibitors: Useful Chemical Tools for Cancer Cell Biology. Journal of Medicinal Chemistry, 2019, 62, 480-490.	6.4	22
101	Computer-assisted Mutagenesis of Ecotin to Engineer Its Secondary Binding Site for Urokinase Inhibition. Journal of Biological Chemistry, 2002, 277, 26623-26631.	3.4	20
102	Cysteine and Aspartyl Proteases Contribute to Protein Digestion in the Gut of Freshwater Planaria. PLoS Neglected Tropical Diseases, 2016, 10, e0004893.	3.0	20
103	Studies of Specificity and Catalysis in Trypsin by Structural Analysis of Site-Directed Mutants. Critical Reviews in Biotechnology, 1988, 8, 225-236.	9.0	19
104	[3] Phage display of proteases and macromolecular inhibitors. Methods in Enzymology, 1996, 267, 52-68.	1.0	19
105	Monitoring protease activity in biological tissues using antibody prodrugs as sensing probes. Scientific Reports, 2020, 10, 5894.	3.3	19
106	Colloidal Aggregators in Biochemical SARS-CoV-2 Repurposing Screens. Journal of Medicinal Chemistry, 2021, 64, 17530-17539.	6.4	19
107	Substrate Modulation of Enzyme Activity in the Herpesvirus Protease Family. Journal of Molecular Biology, 2007, 373, 913-923.	4.2	18
108	Novel interâ€protein crossâ€link identified in the GGHâ€ecotin D137Y dimer. Protein Science, 2001, 10, 1549-1562.	7.6	18

#	Article	IF	CITATIONS
109	Site-Specific Radiofluorination of Biomolecules with 8-[¹⁸ F]-Fluorooctanoic Acid Catalyzed by Lipoic Acid Ligase. ACS Chemical Biology, 2016, 11, 1587-1594.	3.4	18
110	Immunotargeting of Nanocrystals by SpyCatcher Conjugation of Engineered Antibodies. ACS Nano, 2021, 15, 18374-18384.	14.6	18
111	Multiplex Substrate Profiling by Mass Spectrometry for Kinases as a Method for Revealing Quantitative Substrate Motifs. Analytical Chemistry, 2017, 89, 4550-4558.	6.5	17
112	Fab-based inhibitors reveal ubiquitin independent functions for HIV Vif neutralization of APOBEC3 restriction factors. PLoS Pathogens, 2018, 14, e1006830.	4.7	17
113	Antibody-Drug Conjugates Targeting the Urokinase Receptor (uPAR) as a Possible Treatment of Aggressive Breast Cancer. Antibodies, 2019, 8, 54.	2.5	16
114	One Functional Switch Mediates Reversible and Irreversible Inactivation of a Herpesvirus Protease. Biochemistry, 2006, 45, 3572-3579.	2.5	14
115	Broad-Spectrum Allosteric Inhibition of Herpesvirus Proteases. Biochemistry, 2014, 53, 4648-4660.	2.5	14
116	Re-emerging Aspartic Protease Targets: Examining <i>Cryptococcus neoformans</i> Major Aspartyl Peptidase 1 as a Target for Antifungal Drug Discovery. Journal of Medicinal Chemistry, 2021, 64, 6706-6719.	6.4	14
117	Redesigning trypsin via genetic engineering. Journal of Cellular Biochemistry, 1987, 33, 199-211.	2.6	13
118	Mapping Inhibitor Binding Modes on an Active Cysteine Protease via Nuclear Magnetic Resonance Spectroscopy. Biochemistry, 2012, 51, 10087-10098.	2.5	13
119	Allosteric Inhibitors, Crystallography, and Comparative Analysis Reveal Network of Coordinated Movement across Human Herpesvirus Proteases. Journal of the American Chemical Society, 2017, 139, 11650-11653.	13.7	13
120	Further Evidence That the Soluble Urokinase Plasminogen Activator Receptor Does Not Directly Injure Mice or Human Podocytes. Transplantation, 2020, 104, 54-60.	1.0	13
121	The lysosomal aminopeptidase tripeptidyl peptidase 1 displays increased activity in malignant pancreatic cysts. Biological Chemistry, 2019, 400, 1629-1638.	2.5	12
122	Fragmentâ€Based Protein–Protein Interaction Antagonists of a Viral Dimeric Protease. ChemMedChem, 2016, 11, 862-869.	3.2	11
123	Complementary Proteomic and Biochemical Analysis of Peptidases in Lobster Gastric Juice Uncovers the Functional Role of Individual Enzymes in Food Digestion. Marine Biotechnology, 2016, 18, 201-214.	2.4	11
124	An Analysis of Isoclonal Antibody Formats Suggests a Role for Measuring PD-L1 with Low Molecular Weight PET Radiotracers. Molecular Imaging and Biology, 2020, 22, 1553-1561.	2.6	11
125	Procathepsin E is highly abundant but minimally active in pancreatic ductal adenocarcinoma tumors. Biological Chemistry, 2016, 397, 871-881.	2.5	10
126	Substrate Specificity of Cysteine Proteases Beyond the S2 Pocket: Mutagenesis and Molecular Dynamics Investigation of Fasciola hepatica Cathepsins L. Frontiers in Molecular Biosciences, 2018, 5, 40.	3.5	10

#	Article	IF	CITATIONS
127	HIV protease (HIV PR) inhibitor structureâ€activityâ€selectivity, and active site molecular modeling of high affinity Leu [CH(OH)CH ₂]Val modified viral and nonviral substrate analogs. International Journal of Peptide and Protein Research, 1992, 40, 274-281.	0.1	9
128	Clustering of disulfide-rich peptides provides scaffolds for hit discovery by phage display: application to interleukin-23. BMC Bioinformatics, 2016, 17, 481.	2.6	9
129	Evolutionary Selection on Barrier Activity: Bar1 Is an Aspartyl Protease with Novel Substrate Specificity. MBio, 2015, 6, e01604-15.	4.1	8
130	KH-Type Splicing Regulatory Protein Controls Colorectal Cancer Cell Growth and Modulates the Tumor Microenvironment. American Journal of Pathology, 2019, 189, 1916-1932.	3.8	8
131	Antibody Probes of Module 1 of the 6-Deoxyerythronolide B Synthase Reveal an Extended Conformation During Ketoreduction. Journal of the American Chemical Society, 2020, 142, 14933-14939.	13.7	8
132	Discovery and Characterization of a Thioesterase-Specific Monoclonal Antibody That Recognizes the 6-Deoxyerythronolide B Synthase. Biochemistry, 2018, 57, 6201-6208.	2.5	7
133	Structural determinants of specificity and regulation of activity in the allosteric loop network of human KLK8/neuropsin. Scientific Reports, 2018, 8, 10705.	3.3	7
134	Identifying a potential biomarker for primary focal segmental glomerulosclerosis and its association with recurrence after transplantation. Clinical Transplantation, 2019, 33, e13487.	1.6	7
135	An Opaque Cell-Specific Expression Program of Secreted Proteases and Transporters Allows Cell-Type Cooperation in <i>Candida albicans</i> . Genetics, 2020, 216, 409-429.	2.9	6
136	Global Protease Activity Profiling Identifies HER2-Driven Proteolysis in Breast Cancer. ACS Chemical Biology, 2021, 16, 712-723.	3.4	6
137	Ecotin modulates thrombin activity through exosite-2 interactions. International Journal of Biochemistry and Cell Biology, 2006, 38, 1893-1900.	2.8	5
138	End-Binding E3 Ubiquitin Ligases Enable Protease Signaling. ACS Chemical Biology, 2021, 16, 2047-2056.	3.4	5
139	Design of a population-based longitudinal cohort study of SARS-CoV-2 incidence and prevalence among adults in the San Francisco Bay Area. Annals of Epidemiology, 2022, 67, 81-100.	1.9	5
140	Engineering Ecotin for Identifying Proteins with a Trypsin Fold. Applied Biochemistry and Biotechnology, 2010, 160, 2355-2365.	2.9	4
141	Inhibiting a dynamic viral protease by targeting a non-catalytic cysteine. Cell Chemical Biology, 2022, 29, 785-798.e19.	5.2	4
142	Analysis of an engineered plasma kallikrein inhibitor and its effect on contact activation. Biological Chemistry, 2010, 391, 425-33.	2.5	3
143	Isoforms of Cathepsin B1 in Neurotropic Schistosomula of Trichobilharzia regenti Differ in Substrate Preferences and a Highly Expressed Catalytically Inactive Paralog Binds Cystatin. Frontiers in Cellular and Infection Microbiology, 2020, 10, 66.	3.9	3
144	MO009NEUTRALIZATION OF UPAR WITH AN ANTI-UPAR ANTIBODY AMELIORATES RECURRENT FSGS SERA INDUCED PODOCYTE INJURY. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	2

#	Article	IF	CITATIONS
145	Translation of a Protease Turnover Assay for Clinical Discrimination of Mucinous Pancreatic Cysts. Diagnostics, 2022, 12, 1343.	2.6	2
146	A Screening Strategy for Trapping the Inactive Conformer of a Dimeric Enzyme with a Small Molecule Inhibitor. Methods in Molecular Biology, 2012, 928, 119-131.	0.9	1
147	Single-Molecule Sensing of Caspase Activation in Live Cells via Plasmon Coupling Nanotechnology. Methods in Enzymology, 2014, 544, 271-297.	1.0	1
148	Special delivery. Biochemistry and Molecular Biology Education, 2002, 30, 151-151.	1.2	0
149	Ecotin: Exploring a feasible antithrombotic profile. International Journal of Biological Macromolecules, 2015, 78, 296-303.	7.5	0
150	Identification of recombinant Fabs for structural and functional characterization of HIV-host factor complexes. PLoS ONE, 2021, 16, e0250318.	2.5	0
151	Beginning at the End(s): A Latent End-Binding Network at the Host–Pathogen Interface. Biochemistry, 2021, 60, 1627-1629.	2.5	0
152	New Insight in Targeting Herpes Virus Family of Proteases. FASEB Journal, 2006, 20, A941.	0.5	0