
Doojin Vak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1295016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward Large Scale Rollâ€ŧoâ€Roll Production of Fully Printed Perovskite Solar Cells. Advanced Materials, 2015, 27, 1241-1247.	21.0	785
2	One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 2018, 46, 185-192.	16.0	271
3	Threeâ€Dimensional Bulk Heterojunction Morphology for Achieving High Internal Quantum Efficiency in Polymer Solar Cells. Advanced Functional Materials, 2009, 19, 2398-2406.	14.9	236
4	Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation. Applied Physics Letters, 2007, 91, .	3.3	228
5	3D Printer Based Slotâ€Die Coater as a Labâ€ŧoâ€Fab Translation Tool for Solutionâ€Processed Solar Cells. Advanced Energy Materials, 2015, 5, 1401539.	19.5	196
6	Waterâ€Soluble Polyfluorenes as an Interfacial Layer Leading to Cathodeâ€Independent High Performance of Organic Solar Cells. Advanced Functional Materials, 2010, 20, 1977-1983.	14.9	195
7	Organic Solar Cells Using a Highâ€Molecularâ€Weight Benzodithiophene–Benzothiadiazole Copolymer with an Efficiency of 9.4%. Advanced Materials, 2015, 27, 702-705.	21.0	188
8	Mechanical integrity of solution-processed perovskite solar cells. Extreme Mechanics Letters, 2016, 9, 353-358.	4.1	150
9	Selfâ€Assembled 2D Perovskite Layers for Efficient Printable Solar Cells. Advanced Energy Materials, 2019, 9, 1803258.	19.5	149
10	Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy, 2017, 31, 210-217.	16.0	142
11	An inter-laboratory stability study of roll-to-roll coated flexible polymer solar modules. Solar Energy Materials and Solar Cells, 2011, 95, 1398-1416.	6.2	132
12	Effect of Cation Composition on the Mechanical Stability of Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702116.	19.5	130
13	A New Poly(thienylenevinylene) Derivative with High Mobility and Oxidative Stability for Organic Thinâ€Film Transistors and Solar Cells. Advanced Materials, 2009, 21, 2808-2814.	21.0	118
14	Manufacturing cost and market potential analysis of demonstrated roll-to-roll perovskite photovoltaic cell processes. Solar Energy Materials and Solar Cells, 2018, 174, 314-324.	6.2	113
15	Solution Processable Fluorenyl Hexaâ€ <i>peri</i> â€hexabenzocoronenes in Organic Fieldâ€Effect Transistors and Solar Cells. Advanced Functional Materials, 2010, 20, 927-938.	14.9	109
16	Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. Solar Energy Materials and Solar Cells, 2018, 179, 80-86.	6.2	104
17	Organic photovoltaic modules fabricated by an industrial gravure printing proofer. Solar Energy Materials and Solar Cells, 2013, 109, 47-55.	6.2	103
18	Fully spray-coated ITO-free organic solar cells for low-cost power generation. Solar Energy Materials and Solar Cells, 2010, 94, 1333-1337.	6.2	101

#	Article	IF	CITATIONS
19	Humidityâ€Tolerant Rollâ€toâ€Roll Fabrication of Perovskite Solar Cells via Polymerâ€Additiveâ€Assisted Hot Slot Die Deposition. Advanced Functional Materials, 2019, 29, 1809194.	14.9	93
20	Printing-friendly sequential deposition via intra-additive approach for roll-to-roll process of perovskite solar cells. Nano Energy, 2017, 41, 443-451.	16.0	91
21	Hot slot die coating for additive-free fabrication of high performance roll-to-roll processed polymer solar cells. Energy and Environmental Science, 2018, 11, 3248-3255.	30.8	85
22	Photodynamic Properties of Azobenzene Molecular Films with Triphenylamines. Chemistry of Materials, 2003, 15, 4021-4027.	6.7	83
23	Waterâ€5oluble Polyfluorenes as an Electron Injecting Layer in PLEDs for Extremely High Quantum Efficiency. Advanced Materials, 2008, 20, 1624-1629.	21.0	83
24	ITO-Free Flexible Perovskite Solar Cells Based on Roll-to-Roll, Slot-Die Coated Silver Nanowire Electrodes. Solar Rrl, 2017, 1, 1700059.	5.8	78
25	Synthesis of a New Cross-Linkable Perfluorocyclobutane-Based Hole-Transport Material. Organic Letters, 2006, 8, 4703-4706.	4.6	73
26	Surface plasmon enhanced photoluminescence of conjugated polymers. Applied Physics Letters, 2007, 90, 161107.	3.3	70
27	How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison, between two accredited and eight non-accredited laboratories. Journal of Materials Chemistry A, 2017, 5, 22542-22558.	10.3	70
28	Synthesis of a Double Spiro-Polyindenofluorene with a Stable Blue Emission. Organic Letters, 2005, 7, 4229-4232.	4.6	69
29	Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells. Communications Materials, 2020, 1, .	6.9	66
30	Novel cationic water-soluble polyfluorene derivatives with ion-transporting side groups for efficient electron injection in PLEDs. Organic Electronics, 2007, 8, 773-783.	2.6	65
31	High Performance Rollâ€ŧoâ€Roll Produced Fullereneâ€Free Organic Photovoltaic Devices via Temperatureâ€Controlled Slot Die Coating. Advanced Functional Materials, 2019, 29, 1805825.	14.9	64
32	Slotâ€Die and Rollâ€ŧoâ€Roll Processed Single Junction Organic Photovoltaic Cells with the Highest Efficiency. Advanced Energy Materials, 2019, 9, 1901805.	19.5	62
33	A novel spiro-functionalized polyfluorene derivative with solubilizing side chains. Journal of Materials Chemistry, 2004, 14, 1342.	6.7	60
34	A porphyrin-hexa-peri-hexabenzocoronene-porphyrin triad: synthesis, photophysical properties and performance in a photovoltaic device. Journal of Materials Chemistry, 2010, 20, 7005.	6.7	60
35	Photonic Sintering of Copper through the Controlled Reduction of Printed CuO Nanocrystals. ACS Applied Materials & Interfaces, 2015, 7, 25473-25478.	8.0	57
36	Back-contacted hybrid organic–inorganic perovskite solar cells. Journal of Materials Chemistry C, 2016, 4, 3125-3130.	5.5	54

#	Article	IF	CITATIONS
37	Progress in Scalable Coating and Rollâ€ŧoâ€Roll Compatible Printing Processes of Perovskite Solar Cells toward Realization of Commercialization. Advanced Optical Materials, 2018, 6, 1701182.	7.3	52
38	Synthesis and Characterization of Spiro-Triphenylamine Configured Polyfluorene Derivatives with Improved Hole Injection. Macromolecules, 2006, 39, 6433-6439.	4.8	50
39	A novel azobenzene-based amorphous molecular material with a spiro linked bifluorene. Journal of Materials Chemistry, 2003, 13, 2904.	6.7	48
40	Cationic Conjugated Polyelectrolytes with Molecular Spacers for Efficient Fluorescence Energy Transfer to Dye-Labeled DNA. Advanced Functional Materials, 2007, 17, 290-295.	14.9	47
41	Factors to be Considered in Bulk Heterojunction Polymer Solar Cells Fabricated by the Spray Process. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1838-1846.	2.9	47
42	Reverse gravure coating for roll-to-roll production of organic photovoltaics. Solar Energy Materials and Solar Cells, 2016, 149, 154-161.	6.2	46
43	Silver Nanocrystal-Modified Silicon Nanowires as Substrates for Surface-Enhanced Raman and Hyper-Raman Scattering. Analytical Chemistry, 2006, 78, 6279-6282.	6.5	42
44	A Lab-to-Fab Study toward Roll-to-Roll Fabrication of Reproducible Perovskite Solar Cells under Ambient Room Conditions. Cell Reports Physical Science, 2021, 2, 100293.	5.6	39
45	Optical Properties of Perfluorocyclobutane Aryl Ether Polymers for Polymer Photonic Devices. Macromolecules, 2004, 37, 5724-5731.	4.8	37
46	Development of a High-Performance Donor–Acceptor Conjugated Polymer: Synergy in Materials and Device Optimization. Chemistry of Materials, 2016, 28, 3481-3487.	6.7	35
47	Characterization of a high-thermal-stability spiroanthracenefluorene-based blue-light-emitting polymer optical gain medium. Journal of Applied Physics, 2005, 98, 083101.	2.5	33
48	Synthesis of novel arylamine containing perfluorocyclobutane and its electrochromic properties. Journal of Materials Chemistry, 2009, 19, 2380.	6.7	32
49	Organic Photovoltaics' New Renaissance: Advances Toward Rollâ€ŧoâ€Roll Manufacturing of Nonâ€Fullerene Acceptor Organic Photovoltaics. Advanced Materials Technologies, 2022, 7, .	5.8	32
50	Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells. Scientific Reports, 2016, 6, 20357.	3.3	30
51	New barrier encapsulation and lifetime assessment of printed organic photovoltaic modules. Solar Energy Materials and Solar Cells, 2016, 155, 108-116.	6.2	30
52	Controlling Homogenous Spherulitic Crystallization for Highâ€Efficiency Planar Perovskite Solar Cells Fabricated under Ambient Highâ€Humidity Conditions. Small, 2019, 15, e1904422.	10.0	30
53	Ambipolar Hexa- <i>peri</i> -hexabenzocoroneneâ^'Fullerene Hybrid Materials. Organic Letters, 2010, 12, 5000-5003.	4.6	29
54	Machine learning-assisted development of organic photovoltaics <i>via</i> high-throughput <i>in situ</i> formulation. Energy and Environmental Science, 2021, 14, 3438-3446.	30.8	29

#	Article	IF	CITATIONS
55	Beyond Fullerenes: Indacenodithiophene-Based Organic Charge-Transport Layer toward Upscaling of Low-Cost Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 22143-22155.	8.0	27
56	Blue electroluminescence from spiro-configured polyfluorene derivatives with hetero-atoms. Journal of Luminescence, 2005, 115, 109-116.	3.1	26
57	Surface-enhanced resonance Raman and hyper-Raman spectroscopy of water-soluble substituted stilbene and distyrylbenzene chromophores. Journal of Raman Spectroscopy, 2006, 37, 132-141.	2.5	26
58	Solvent effects on resonant first hyperpolarizabilities and Raman and hyper-Raman spectra of DANS and a water-soluble analog. Journal of Chemical Physics, 2006, 125, 054506.	3.0	25
59	Effect of photo- and thermo-oxidative degradation on the performance of hybrid photovoltaic cells with a fluorene-based copolymer and nanocrystalline TiO ₂ . Journal of Materials Chemistry, 2008, 18, 654-659.	6.7	24
60	Improving the Stability of Ambient Processed, SnO ₂ â€Based, Perovskite Solar Cells by the UVâ€Treatment of Subâ€Cells. Solar Rrl, 2020, 4, 2000262.	5.8	21
61	Optically monitored spray coating system for the controlled deposition of the photoactive layer in organic solar cells. Applied Physics Letters, 2015, 106, .	3.3	18
62	A stability study of roll-to-roll processed organic photovoltaic modules containing a polymeric electron-selective layer. Solar Energy Materials and Solar Cells, 2016, 152, 133-140.	6.2	16
63	Roll-to-roll compatible quinoxaline-based polymers toward high performance polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 25208-25216.	10.3	14
64	Can Laminated Carbon Challenge Gold? Toward Universal, Scalable, and Low ost Carbon Electrodes for Perovskite Solar Cells. Advanced Materials Technologies, 2022, 7, 2101148.	5.8	14
65	Efficient single-component light-emitting electrochemical cells with an ion-conducting water-soluble polyfluorene. Applied Physics Letters, 2009, 94, .	3.3	13
66	Solution Processable Monosubstituted Hexaâ€ <i>Peri</i> â€Hexabenzocoronene Selfâ€Assembling Dyes. Advanced Functional Materials, 2012, 22, 2015-2026.	14.9	13
67	Microfluidic Processing of Ligandâ€Engineered NiO Nanoparticles for Lowâ€Temperature Holeâ€Transporting Layers in Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100342.	5.8	11
68	Synthesis and fluorescence study of water-soluble conjugated polymers for efficient FRET-based DNA detection. Current Applied Physics, 2009, 9, 636-642.	2.4	9
69	Non-Aqueous One-Pot SnO ₂ Nanoparticle Inks and Their Use in Printable Perovskite Solar Cells. Chemistry of Materials, 2022, 34, 5535-5545.	6.7	7
70	Synthesis of Poly(p-phenylene-vinylene) Derivatives Containing an Oxadiazole Pendant Group and Their Applications to Organic Electronic Devices. Journal of Nanoscience and Nanotechnology, 2013, 13, 3321-3330.	0.9	4
71	Sequent spray deposition of secondary solvent for efficient polymer solar cells. Macromolecular Research, 2015, 23, 696-703.	2.4	4
72	Photovoltaic Devices: Slotâ€Die and Rollâ€ŧoâ€Roll Processed Single Junction Organic Photovoltaic Cells with the Highest Efficiency (Adv. Energy Mater. 36/2019). Advanced Energy Materials, 2019, 9, 1970138.	19.5	3

#	Article	IF	CITATIONS
73	Photovoltaic Devices: High Performance Rollâ€ŧoâ€Roll Produced Fullereneâ€Free Organic Photovoltaic Devices via Temperatureâ€Controlled Slot Die Coating (Adv. Funct. Mater. 6/2019). Advanced Functional Materials, 2019, 29, 1970037.	14.9	1
74	Slot Die Coating of CIGS Nanoparticle Inks for Scalable Solution Processed Photovoltaics. , 2019, , .		1
75	Water-Soluble Conjugated Polyelectrolytes with Molecular Bumper for Efficient FRET Biosensor. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	Ο