Frank-Dieter Kopinke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1294436/publications.pdf

Version: 2024-02-01

192 papers 8,003 citations

47006 47 h-index 83 g-index

201 all docs

201 docs citations

times ranked

201

7735 citing authors

#	Article	IF	CITATIONS
1	Enhanced degradation of perfluorooctanoic acid by heat-activated persulfate in the presence of zeolites. Chemical Engineering Journal, 2022, 429, 132500.	12.7	40
2	Long-range catalytic hydrodechlorination of preadsorbed DDT at ambient temperature. Applied Catalysis B: Environmental, 2022, 304, 120966.	20.2	1
3	Borohydride and metallic copper as a robust dehalogenation system: Selectivity assessment and system optimization. Science of the Total Environment, 2022, 810, 152065.	8.0	4
4	Some mistakes and misinterpretations in the analysis of thermodynamic adsorption data. Journal of Molecular Liquids, 2022, 352, 118762.	4.9	24
5	What is specific in adsorption of perfluoroalkyl acids on carbon materials?. Chemosphere, 2021, 273, 128520.	8.2	25
6	Photodegradation of Perfluorooctanesulfonic Acid on Fe-Zeolites in Water. Environmental Science & Envi	10.0	38
7	Comment on "Thermal Stability and Decomposition of Perfluoroalkyl Substances on Spent Granular Activated Carbon― Environmental Science and Technology Letters, 2021, 8, 362-363.	8.7	6
8	Comments on "Highly Selective Removal of Perfluorinated Contaminants by Adsorption on Allâ€Silica Zeolite Beta― Angewandte Chemie, 2021, 133, 13824-13825.	2.0	0
9	Comments on "Highly Selective Removal of Perfluorinated Contaminants by Adsorption on Allâ€Silica Zeolite Beta― Angewandte Chemie - International Edition, 2021, 60, 13708-13709.	13.8	4
10	Controlling adsorption of perfluoroalkyl acids on activated carbon felt by means of electrical potentials. Chemical Engineering Journal, 2021, 416, 129070.	12.7	20
11	Evidence of heterogeneous degradation of PFOA by activated persulfate – FeS as adsorber and activator. Chemical Engineering Journal, 2021, 423, 130102.	12.7	23
12	Understanding the effect of carbon surface chemistry on adsorption of perfluorinated alkyl substances. Chemical Engineering Journal, 2020, 381, 122689.	12.7	74
13	Reagent or catalyst? – FeS as activator for persulfate in water. Chemical Engineering Journal, 2020, 387, 123804.	12.7	21
14	Comment to the article "Hydroxyl radical scavenging by solid mineral surfaces in oxidative treatment systems: Rate constants and implications―published by K. Rusevova Crincoli and S. G. Huling in Water Research 169, 2020, 115240. Water Research, 2020, 186, 116308.	11.3	0
15	H/D-isotope fractionation due to aqueous phase diffusion – Deuterated hydrocarbons revisited. Chemosphere, 2020, 258, 127357.	8.2	3
16	Degradation of perfluorooctanoic acid adsorbed on Fe-zeolites with molecular oxygen as oxidant under UV-A irradiation. Applied Catalysis B: Environmental, 2020, 278, 119283.	20.2	34
17	The role of nickel traces in fine chemicals for hydrodechlorination reactions with zero-valent iron. Chemical Engineering Journal, 2020, 388, 124185.	12.7	13
18	Interaction of zero-valent iron and carbonaceous materials for reduction of DDT. Chemosphere, 2020, 253, 126712.	8.2	14

#	Article	IF	Citations
19	Acceleration of microiron-based dechlorination in water by contact with fibrous activated carbon. Science of the Total Environment, 2019, 660, 1274-1282.	8.0	13
20	Adsorbent Regeneration by Nonâ€thermal Plasma for Elimination of Odorous Compounds from Indoor Air. Chemical Engineering and Technology, 2019, 42, 1144-1152.	1.5	1
21	Sulfidation of ZVI/AC composite leads to highly corrosion-resistant nanoremediation particles with extended life-time. Science of the Total Environment, 2019, 665, 235-245.	8.0	40
22	Comment on "Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solutionâ€, published by Azizian et al. [Chemical physics 513 (2018) 99–104]. Chemical Physics, 2019, 517, 265-267.	1.9	6
23	Non-thermal plasma treatment for the elimination of odorous compounds from exhaust air from cooking processes. Chemical Engineering Journal, 2018, 334, 1988-1995.	12.7	20
24	Wet oxidation of process water from hydrothermal carbonization of biomass with nitrate as oxidant. Chemical Engineering Journal, 2018, 339, 1-6.	12.7	23
25	Chemicalâ€Free Pest Control by Means of Dielectric Heating with Radio Waves: Selective Heating. Chemical Engineering and Technology, 2018, 41, 116-123.	1.5	4
26	Comment on "Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solution: A critical review, published by Tran etÂal. [Water Research 120, 2017, 88–116]― Water Research, 2018, 129, 520-521.	11.3	30
27	Isotope fractionation in phase-transfer processes under thermodynamic and kinetic control – Implications for diffusive fractionation in aqueous solution. Science of the Total Environment, 2018, 610-611, 495-502.	8.0	10
28	Wet Oxidation of Process Waters from the Hydrothermal Carbonization of Sewage Sludge. Chemie-Ingenieur-Technik, 2018, 90, 872-880.	0.8	24
29	Competing adsorption of toluene and water on various zeolites. Chemical Engineering Journal, 2018, 351, 356-363.	12.7	136
30	Hydrothermal treatment for regeneration of activated carbon loaded with organic micropollutants. Science of the Total Environment, 2018, 644, 854-861.	8.0	33
31	Optimization of PDMS-embedded palladium hydrodechlorination catalysts. Chemical Engineering Journal, 2017, 319, 21-30.	12.7	12
32	Suspension stability and mobility of Trap-Ox Fe-zeolites for in-situ nanoremediation. Journal of Colloid and Interface Science, 2017, 501, 311-320.	9.4	16
33	Hydrothermal Conversion of Triclosanâ€"The Role of Activated Carbon as Sorbent and Reactant. Environmental Science & Environm	10.0	7
34	What Controls Selectivity of Hydroxyl Radicals in Aqueous Solution? Indications for a Cage Effect. Journal of Physical Chemistry A, 2017, 121, 7947-7955.	2.5	15
35	Comment on Vapor Pressure Isotope Effects in Halogenated Organic Compounds and Alcohols Dissolved in Water. Analytical Chemistry, 2017, 89, 10637-10638.	6.5	2
36	Isotope fractionation of benzene during partitioning – Revisited. Chemosphere, 2017, 168, 508-513.	8.2	19

#	Article	IF	CITATIONS
37	Fluorescence labelling as tool for zeolite particle tracking in nanoremediation approaches. Science of the Total Environment, 2016, 550, 820-826.	8.0	8
38	Accelerated Catalytic Fenton Reaction with Traces of Iron: An Fe–Pd-Multicatalysis Approach. Environmental Science & Enviro	10.0	81
39	Utilization of Organosolv Waste Waters as Liquid Phase for Hydrothermal Carbonization of Chaff. ACS Sustainable Chemistry and Engineering, 2016, 4, 5737-5742.	6.7	13
40	Water dissociation in a radio-frequency electromagnetic field with∢i>ex situ∢/i>electrodes—decomposition of perfluorooctanoic acid and tetrahydrofuran. Plasma Sources Science and Technology, 2016, 25, 055003.	3.1	2
41	Efforts for long-term protection of palladium hydrodechlorination catalysts. Applied Catalysis B: Environmental, 2016, 186, 204-211.	20.2	23
42	Reductive dechlorination in water: Interplay of sorption and reactivity. Applied Catalysis B: Environmental, 2016, 181, 747-753.	20.2	31
43	Carbo-Iron as improvement of the nanoiron technology: From laboratory design to the field test. Science of the Total Environment, 2016, 563-564, 641-648.	8.0	43
44	Comparison of Microwave and Radio-Frequency Heating of Dealuminated Zeolites and Al2O3. Journal of Microwave Power and Electromagnetic Energy, 2015, 49, 225-244.	0.8	2
45	Combination of hydrothermal carbonization and wet oxidation of various biomasses. Chemical Engineering Journal, 2015, 279, 715-724.	12.7	34
46	Colloidal activated carbon for in-situ groundwater remediation — Transport characteristics and adsorption of organic compounds in water-saturated sediment columns. Journal of Contaminant Hydrology, 2015, 179, 76-88.	3.3	49
47	Organic breakdown products resulting from hydrothermal carbonization of brewer's spent grain. Chemosphere, 2015, 131, 71-77.	8.2	23
48	Characterization of biochars and dissolved organic matter phases obtained upon hydrothermal carbonization of Elodea nuttallii. Bioresource Technology, 2015, 189, 145-153.	9.6	36
49	Hydrothermal carbonization of poly(vinyl chloride). Chemosphere, 2015, 119, 682-689.	8.2	131
50	Integrated water resources management under different hydrological, climatic and socio-economic conditions: results and lessons learned from a transdisciplinary IWRM project IWAS. Environmental Earth Sciences, 2014, 72, 4677-4687.	2.7	9
51	Comments on "Reuse of Semiconductor Wastewater Using Reverse Osmosis and Metal-Immobilized Catalyst-Based Advanced Oxidation Process― Industrial & Engineering Chemistry Research, 2014, 53, 18585-18586.	3.7	2
52	Chemicalâ€Free Control of Pests in Wood by Means of Dielectric Heating with Radio Waves and Microwaves. Chemie-Ingenieur-Technik, 2014, 86, 1187-1197.	0.8	2
53	Characterization of biocoals and dissolved organic matter phases obtained upon hydrothermal carbonization of brewer's spent grain. Bioresource Technology, 2014, 164, 162-169.	9.6	101
54	LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions. Chemical Engineering Journal, 2014, 239, 322-331.	12.7	151

#	Article	IF	CITATIONS
55	Natural and synthetic zeolites in adsorption/oxidation processes to remove surfactant molecules from water. Separation and Purification Technology, 2014, 127, 1-9.	7.9	48
56	Influence of Process Water Reuse on the Hydrothermal Carbonization of Paper. ACS Sustainable Chemistry and Engineering, 2014, 2, 2165-2171.	6.7	75
57	Wet oxidation of char–water-slurries from hydrothermal carbonization of paper and brewer's spent grains. Fuel Processing Technology, 2014, 128, 425-431.	7.2	20
58	Selective dielectric heating for efficient adsorptive-catalytic cleaning of contaminated gas streams. Applied Catalysis A: General, 2014, 474, 244-249.	4.3	11
59	Carbon and hydrogen isotope fractionation of benzene and toluene during hydrophobic sorption in multistep batch experiments. Chemosphere, 2014, 107, 454-461.	8.2	34
60	Water dissociation in a radio-frequency electromagnetic field with ⟨b⟩ ⟨i⟩ ex situ ⟨li⟩ ⟨lo⟩ electrodesâ€" process characterization. Plasma Sources Science and Technology, 2013, 22, 015010.	3.1	3
61	Hydrothermal carbonization of olive mill wastewater. Bioresource Technology, 2013, 133, 581-588.	9.6	73
62	Carbo-Iron - ein maßgeschneidertes Reagenz zur In-situ-Grundwassersanierung. Chemie-Ingenieur-Technik, 2013, 85, 1302-1311.	0.8	6
63	Demonstration of In Situ Radio-Frequency Heating at a Former Industrial Site. Chemical Engineering and Technology, 2013, 36, 1108-1116.	1.5	4
64	Hydrophobic Fe-Zeolites for Removal of MTBE from Water by Combination of Adsorption and Oxidation. Environmental Science & Env	10.0	96
65	Potential of the hydrothermal carbonization process for the degradation of organic pollutants. Chemosphere, 2013, 92, 674-680.	8.2	43
66	Water dissociation in a radio-frequency electromagnetic field with <i> ex situ < /i> </i> electrodesâ€" modelling of discharge initiation. Plasma Sources Science and Technology, 2013, 22, 025007.	3.1	5
67	Modeling of a Thermo-chromatographic Pulse (TCP) as Radio-frequency (RF)-induced Selective Heating Effect. Journal of Microwave Power and Electromagnetic Energy, 2013, 47, 24-45.	0.8	4
68	Migrating Temperature "Thermo-Chromatographic―Pulses (TCP) Initiated by Radio-Frequency (RF) Heating. Journal of Microwave Power and Electromagnetic Energy, 2012, 46, 241-252.	0.8	3
69	Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions—Influence of Fe(II)/Fe(III) ratio on catalytic performance. Journal of Hazardous Materials, 2012, 241-242, 433-440.	12.4	228
70	Critical Evaluation of the 2D-CSIA Scheme for Distinguishing Fuel Oxygenate Degradation Reaction Mechanisms. Environmental Science & Environmental Sci	10.0	36
71	Sorption-Induced Effects of Humic Substances on Mass Transfer of Organic Pollutants through Aqueous Diffusion Boundary Layers: the Example of Water/Air Exchange. Environmental Science & Technology, 2012, 46, 2196-2203.	10.0	6
72	Carbo-Iron – An Fe/AC composite – As alternative to nano-iron for groundwater treatment. Water Research, 2012, 46, 3817-3826.	11.3	123

#	Article	IF	Citations
73	Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Applied Catalysis B: Environmental, 2012, 125, 51-58.	20.2	141
74	Comment on "Critical Review of Pd-Based Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water― Environmental Science & Catalytic Treatment of Priority Contaminants in Water⧕ Environmental Science & Catalytic Treatment of Priority Contaminants in Water⧕ En	10.0	5
75	Sulfurâ€ ³⁶ S stable isotope labeling of amino acids for quantification (SULAQ). Proteomics, 2012, 12, 37-42.	2.2	20
76	In Situ Radioâ€Frequency Heating for Soil Remediation at a Former Service Station: Case Study and General Aspects. Chemical Engineering and Technology, 2012, 35, 1534-1544.	1.5	24
77	Carbo-Iron®—Synthesis and stabilization of Fe(0)-doped colloidal activated carbon for in situ groundwater treatment. Chemical Engineering Journal, 2012, 191, 588-595.	12.7	80
78	Influence of dissolved humic substances on the mass transfer of organic compounds across the air–water interface. Chemosphere, 2012, 86, 138-143.	8.2	10
79	Stabilization of potassium permanganate particles with manganese dioxide. Chemosphere, 2012, 86, 783-788.	8.2	8
80	Protection of palladium catalysts for hydrodechlorination of chlorinated organic compounds in wastewaters. Applied Catalysis B: Environmental, 2012, 119-120, 241-247.	20.2	31
81	Influence of moisture content and temperature on the dielectric permittivity of zeolite NaY. Physical Chemistry Chemical Physics, 2011, 13, 4119.	2.8	18
82	Ambivalent Role of Water in Thermodesorption of Hydrocarbons from Contaminated Soil. Environmental Science & Environmental Sci	10.0	2
83	Mobile Aliphatic Domains in Humic Substances and Their Impact on Contaminant Mobility within the Matrix. Environmental Science & Eamp; Technology, 2011, 45, 5164-5169.	10.0	8
84	Kinetics of Desorption of Organic Compounds from Dissolved Organic Matter. Environmental Science & Env	10.0	29
85	Guest Diffusion in Interpenetrating Networks of Micro- and Mesopores. Journal of the American Chemical Society, 2011, 133, 2437-2443.	13.7	30
86	Paramagnetic Relaxation Enhancement (PRE) as a Tool for Probing Diffusion in Environmentally Relevant Porous Media. Environmental Science & Environmen	10.0	8
87	Principal Limitations in Homogeneous Gas Phase Chemistry in Non-Thermal Plasmas. Plasma Chemistry and Plasma Processing, 2011, 31, 307-314.	2.4	0
88	Combining Different Frequencies for Electrical Heating of Saturated and Unsaturated Soil Zones. Chemical Engineering and Technology, 2011, 34, 1645-1651.	1.5	6
89	Electrode Design for Soil Decontamination with Radio-Frequency Heating. Chemical Engineering and Technology, 2011, 34, 1652-1659.	1.5	12
90	Radiowellenunterstützte thermische Behandlung als neue Technologie zur Trocknung und Dekontamination von Bauteilen. Chemie-Ingenieur-Technik, 2011, 83, 254-261.	0.8	9

#	Article	IF	Citations
91	Dielectric Radioâ€Frequency Heating of Zeolites – Selectivity, Thermoâ€Chromatographic Pulse and Drying by Water. Chemie-Ingenieur-Technik, 2011, 83, 2260-2269.	0.8	6
92	Chlorophenol degradation using a one-pot reduction–oxidation process. Applied Catalysis B: Environmental, 2011, 104, 161-168.	20.2	20
93	The evidence of NMR diffusometry on pore space heterogeneity in activated carbon. Microporous and Mesoporous Materials, 2011, 141, 184-191.	4.4	11
94	Indications of the reactive species in a heterogeneous Fenton-like reaction using Fe-containing zeolites. Applied Catalysis A: General, 2011, 398, 44-53.	4.3	128
95	Modular System Concept For Soil Heating Using Radio-Frequency Energy. , 2010, , .		8
96	Pd-catalyzed hydrodechlorination of chlorinated aromatics in contaminated waters—Effects of surfactants, organic matter and catalyst protection by silicone coating. Applied Catalysis B: Environmental, 2010, 96, 323-328.	20.2	53
97	Fe-Zeolites as Catalysts for Wet Peroxide Oxidation of Organic Groundwater Contaminants: Mechanistic Studies and Applicability Tests. Separation Science and Technology, 2010, 45, 1579-1586.	2.5	16
98	Influence ofin SituSteam Formation by Radio Frequency Heating on Thermodesorption of Hydrocarbons from Contaminated Soil. Environmental Science & Environmental Science & 2010, 44, 9502-9508.	10.0	16
99	On the Role of Water in Dielectric Heating with Radio Waves. Chemical Engineering and Technology, 2009, 32, 754-762.	1.5	12
100	Fe-zeolites as catalysts for chemical oxidation of MTBE in water with H2O2. Applied Catalysis B: Environmental, 2009, 89, 356-364.	20.2	85
101	Sulphide-induced deactivation of Pd/Al2O3 as hydrodechlorination catalyst and its oxidative regeneration with permanganate. Applied Catalysis B: Environmental, 2009, 90, 613-617.	20.2	31
102	Pd/Fe3O4 nano-catalysts for selective dehalogenation in wastewater treatment processes—Influence of water constituents. Applied Catalysis B: Environmental, 2009, 91, 389-396.	20.2	77
103	New Option for Characterizing the Mobility of Organic Compounds in Humic Acids. Environmental Science & Environmental Science	10.0	9
104	Formation of chlorinated biphenyls, diphenyl ethers and benzofurans as a result of Fenton-driven oxidation of 2-chlorophenol. Chemosphere, 2009, 75, 772-780.	8.2	55
105	Highly Active Pd-on-Magnetite Nanocatalysts for Aqueous Phase Hydrodechlorination Reactions. Environmental Science & Environme	10.0	72
106	Influence of sorption to dissolved humic substances on transformation reactions of hydrophobic organic compounds in water. Part II: Hydrolysis reactions. Chemosphere, 2008, 71, 1452-1460.	8.2	19
107	Engineering Aspects of Radio-Wave Heating for Soil Remediation and Compatibility with Biodegradation. Environmental Science & Engineering Aspects of Radio-Wave Heating for Soil Remediation and Compatibility with Biodegradation.	10.0	43
108	Permanganate Oxidation of Sulfur Compounds to Prevent Poisoning of Pd Catalysts in Water Treatment Processes. Environmental Science & Environmental Sc	10.0	39

#	Article	IF	Citations
109	Influence of Salt Impregnation on the Initiation of Thermo-Chromatographic Pulses by Dielectric Heating. Journal of Microwave Power and Electromagnetic Energy, 2007, 42, 45-54.	0.8	2
110	Influence of Sorption to Dissolved Humic Substances on Transformation Reactions of Hydrophobic Organic Compounds in Water. I. Chlorination of PAHs. Environmental Science & Technology, 2007, 41, 7003-7009.	10.0	40
111	Results of Field Tests on Radio-Wave Heating for Soil Remediation. Environmental Science & Emp; Technology, 2007, 41, 8447-8452.	10.0	31
112	Comment on "Reaction of Polycyclic Aromatic Hydrocarbons Adsorbed on Silica in Aqueous Chlorine― Environmental Science & Technology, 2007, 41, 6315-6315.	10.0	0
113	Selectivity of Dielectric Heating: Temperature-Programmed Desorption (TPD) Experiments and Initiation of Thermo-Chromatographic Pulses. Journal of Microwave Power and Electromagnetic Energy, 2007, 42, 9-16.	0.8	3
114	Humic acid modified Fenton reagent for enhancement of the working pH range. Applied Catalysis B: Environmental, 2007, 72, 26-36.	20.2	235
115	Competitive Sorptionâ^'Desorption Behavior of Triazine Herbicides with Plant Cuticular Fractions. Journal of Agricultural and Food Chemistry, 2006, 54, 7761-7768.	5.2	30
116	Hydrodehalogenation of halogenated hydrocarbons in water with Pd catalysts: Reaction rates and surface competition. Applied Catalysis B: Environmental, 2006, 63, 161-167.	20.2	112
117	Comment on "New Evaluation Scheme for Two-Dimensional Isotope Analysis to Decipher Biodegradation Processes: Application to Groundwater Contamination by MTBE― Environmental Science & Technology, 2005, 39, 8541-8542.	10.0	6
118	Catalytic effects of activated carbon on hydrolysis reactions of chlorinated organic compounds. Catalysis Today, 2005, 102-103, 148-153.	4.4	26
119	Interaction of adsorption and catalytic reactions in water decontamination processes. Applied Catalysis B: Environmental, 2005, 58, 9-18.	20.2	247
120	Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds. Applied Catalysis B: Environmental, 2005, 58, 227-234.	20.2	51
121	Catalytic effects of activated carbon on hydrolysis reactions of chlorinated organic compounds. Applied Catalysis B: Environmental, 2005, 59, 171-179.	20.2	28
122	Influence of Ferroelectric Materials and Catalysts on the Performance of Non-Thermal Plasma (NTP) for the Removal of Air Pollutants. Plasma Chemistry and Plasma Processing, 2005, 25, 595-611.	2.4	136
123	Non-phototrophic CO 2 fixation by soil microorganisms. Plant and Soil, 2005, 269, 193-203.	3.7	90
124	Incorporation of carbon originating from CO2into different compounds of soil microbial biomass and soil organic matterâ€. Isotopes in Environmental and Health Studies, 2005, 41, 135-140.	1.0	28
125	Carbon Isotope Fractionation of Organic Contaminants Due to Retardation on Humic Substances:  Implications for Natural Attenuation Studies in Aquifers. Environmental Science & Echnology, 2005, 39, 6052-6062.	10.0	118
126	Alternative sources of hydrogen for hydrodechlorination of chlorinated organic compounds in water on Pd catalysts. Applied Catalysis A: General, 2004, 271, 119-128.	4.3	91

#	Article	IF	CITATIONS
127	Assimilation of CO2 by soil microorganisms and transformation into soil organic matter. Organic Geochemistry, 2004, 35, 1015-1024.	1.8	90
128	Catalytic hydrodechlorination of groundwater contaminants in water and in the gas phase using Pd/\hat{l}^3 -Al2O3. Applied Catalysis B: Environmental, 2003, 44, 15-24.	20.2	48
129	Hydrodechlorination of chloroorganic compounds in ground water by palladium catalysts. Catalysis Today, 2003, 82, 105-118.	4.4	70
130	Sorption of Pyrene to Dissolved Humic Substances and Related Model Polymers. 2. Solid-Phase Microextraction (SPME) and Fluorescence Quenching Technique (FQT) as Analytical Methods. Environmental Science & Environmental Sci	10.0	38
131	Adsorption of Humic Substances onto Kaolin Clay Related to Their Structural Features. Soil Science Society of America Journal, 2002, 66, 1805-1812.	2.2	100
132	Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds Part 1. Accessibility of the intra-particle volume. Applied Catalysis B: Environmental, 2002, 38, 163-181.	20.2	258
133	Validation of a modified Floryâ€Huggins concept for description of hydrophobic organic compound sorption on dissolved humic substances. Environmental Toxicology and Chemistry, 2002, 21, 1766-1774.	4.3	17
134	Katalytische Dechlorierung von Chlorkohlenwasserstoffen aus kontaminierten GrundwÄ s sern. Grundwasser, 2002, 7, 140-145.	1.4	7
135	Improved oxidation of air pollutants in a non-thermal plasma. Catalysis Today, 2002, 73, 315-323.	4.4	191
136	Validation of a modified flory-huggins concept for description of hydrophobic organic compound sorption on dissolved humic substances. Environmental Toxicology and Chemistry, 2002, 21, 1766-74.	4.3	11
137	Sorption of Very Hydrophobic Organic Compounds (VHOCs) on Dissolved Humic Organic Matter (DOM). 2. Measurement of Sorption and Application of a Floryâ^'Huggins Concept To Interpret the Data. Environmental Science & December 1.00 (2001), 35, 1142-1148.	10.0	98
138	Sorption of Pyrene to Dissolved Humic Substances and Related Model Polymers. 1. Structureâ 'Property Correlation. Environmental Science & Environmenta	10.0	94
139	Sorption and Chemical Reactions of PAHs with Dissolved Humic Substances and Related Model Polymers. Clean - Soil, Air, Water, 2001, 28, 385-399.	0.6	37
140	Sorption of Very Hydrophobic Organic Compounds onto Poly(dimethylsiloxane) and Dissolved Humic Organic Matter. 1. Adsorption or Partitioning of VHOC on PDMS-Coated Solid-Phase Microextraction FibersA Never-Ending Story?. Environmental Science & Enp; Technology, 2000, 34, 3824-3830.	10.0	77
141	INTERACTION OF ORGANIC CHEMICALS (PAH, PCB, TRIAZINES, NITROAROMATICS AND ORGANOTIN) Tj ETQq1 1	0.784314	rgBT /Overl
142	Solid-phase microextraction for determining the binding state of organic pollutants in contaminated water rich in humic organic matter. Journal of Chromatography A, 1998, 816, 159-167.	3.7	82
143	Pyrolysis pattern of anthropogenic and natural humic organic matter. Journal of Separation Science, 1998, 10, 401-411.	1.0	16
144	Comment on "Reactions of Polynuclear Aromatic Hydrocarbons on Soil― Environmental Science & Envir	10.0	0

#	Article	IF	Citations
145	Solid Phase Microextraction To Study the Sorption of Organotin Compounds onto Particulate and Dissolved Humic Organic Matterâ€. Environmental Science & Environmental Science & 1997, 31, 3629-3636.	10.0	110
146	Solid Phase Microextraction for Determining the Distribution of Chemicals in Aqueous Matrices. Analytical Chemistry, 1997, 69, 597-600.	6.5	220
147	Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(\hat{l}^2 -hydroxybutyric acid). Journal of Analytical and Applied Pyrolysis, 1997, 40-41, 43-53.	5.5	150
148	Water solubility enhancement of pyrene in the presence of humic substances, by S. Tanaka et al.: comments. Analytica Chimica Acta, 1997, 355, 101-103.	5.4	13
149	Comment on "Adsorption of CO2and N2on Soil Organic Matter: Nature of Porosity, Surface Area, and Diffusion Mechanismâ€, Environmental Science & Technology, 1996, 30, 3634-3635.	10.0	7
150	Reductive destruction of halogenated hydrocarbons in liquids and solids with solvated electrons. Chemosphere, 1996, 33, 1495-1513.	8.2	16
151	Debromination of duroplastic flame-retarded polymers. Chemosphere, 1996, 33, 2423-2430.	8.2	16
152	Thermal decomposition of biodegradable polyesters—I: Poly(β-hydroxybutyric acid). Polymer Degradation and Stability, 1996, 52, 25-38.	5.8	151
153	Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid). Polymer Degradation and Stability, 1996, 53, 329-342.	5.8	506
154	Hyphenated techniques for characterizing coal wastewaters and associated sediments. Journal of Chromatography A, 1996, 750, 287-301.	3.7	24
155	Sorption of Organic Pollutants on Anthropogenic Humic Matter. Environmental Science & Emp; Technology, 1995, 29, 941-950.	10.0	110
156	Evaluation of matrix-assisted laser desorption/ionization (MALDI) time- of-flight (TOF) mass spectrometry as a method for the determination of the molecular mass distributions of humic acids. European Journal of Mass Spectrometry, 1995, 1, 403.	0.7	22
157	Reactions of hydrocarbons during thermodesorption from sediments. Thermochimica Acta, 1995, 263, 123-139.	2.7	12
158	Thermal conversion of hydrocarbons on solid matrices. Thermochimica Acta, 1995, 263, 113-121.	2.7	14
159	Thermoanalytical methods for characterizing hydrocarbon—sludge—soil mixtures. Thermochimica Acta, 1995, 263, 101-112.	2.7	17
160	Transfer-Line Heat Exchanger Fouling during Pyrolysis of Hydrocarbons. 1. Deposits from Dry Cracked Gases. Industrial & Deposits from Dry Cracked Gases. Industr	3.7	25
161	14C polyaromatics as radio isotope tracers for grafting analysis during heavy oil pyrolysis. Fuel, 1994, 73, 505-509.	6.4	3
162	The thermal Aromatization of Methyl-1,3-cyclohexadienes - an important argument against commonly accepted sigmatropic 1,7-H-shift reactions. Journal FÃ $\frac{1}{4}$ r Praktische Chemie, Chemiker-Zeitung, 1994, 336, 201-206.	0.5	4

#	Article	IF	CITATIONS
163	On the Thermal Cycloisomerization of 1-Vinylnaphthalene to acenaphthene. A mechanistic D-labeling study. Journal Für Praktische Chemie, Chemiker-Zeitung, 1994, 336, 415-420.	0.5	5
164	Comment to the paper: Molecular weight and pyrolysis products distribution of polymers. I. Polystyrene (G. Audisio and F. Bertini, J. Anal. Appl. Pyrolysis, 24 (1992) 61–74). Journal of Analytical and Applied Pyrolysis, 1994, 28, 271-274.	5 . 5	2
165	Relative reactivities of some carbon-hydrogen bonds in hydrogen abstraction by methyl radicals at 950 K. The Journal of Physical Chemistry, 1994, 98, 1171-1175.	2.9	5
166	Coke Formation in the Thermal Cracking of Hydrocarbons. 4. Modeling of Coke Formation in Naphtha Cracking. Industrial & Description of Coke Formation in Naphtha Cracking. Industrial & Description of Coke Formation in Naphtha Cracking. Industrial & Description of Coke Formation in Naphtha Cracking. Industrial & Description of Coke Formation in Naphtha Cracking of Coke Formation in Naphtha Coke Format	3.7	108
167	New results about the mechanism of TLE fouling in steam crackers. Journal of Analytical and Applied Pyrolysis, 1993, 27, 45-55.	5 . 5	29
168	Relative rates of coke formation from hydrocarbons in steam cracking of naphtha. 2. Paraffins, naphthenes, mono-, di-, and cycloolefins, and acetylenes. Industrial & Engineering Chemistry Research, 1993, 32, 56-61.	3.7	99
169	Relative rates of coke formation from hydrocarbons in steam cracking of naphtha. 3. Aromatic hydrocarbons. Industrial & Engineering Chemistry Research, 1993, 32, 2620-2625.	3.7	75
170	Bestimmung der Isotopenverteilung in 14C-markierten Kohlenwasserstoffen durch thermische Fragmentierung — Eine neue vorteilhafte Variante. Isotopes in Environmental and Health Studies, 1989, 25, 327-329.	0.2	0
171	On the Thermal Cycloisomerization of Longâ€Chain Alkylacetylenes in the Gas Phase. Chemische Berichte, 1989, 122, 715-719.	0.2	10
172	Gasphasenpyrolyse von [2,2,3,3â€D ₄] Phenylcyclopropan. Chemische Berichte, 1989, 122, 721-725.	0.2	7
173	Studies on the Thermal Conversion of Long-chain Alkynes at high temperatures in the gas phase. Journal FÃ $^{1}\!\!/_{4}$ r Praktische Chemie, 1989, 331, 273-284.	0.2	4
174	Relative reactivities of carbon-hydrogen bonds in hydrogen atom abstraction by phenyl radicals. Journal of Organic Chemistry, 1989, 54, 3571-3576.	3.2	18
175	Zur Gasphasenpyrolyse von 6â€alkylierten Pentafulvenen. Chemische Berichte, 1988, 121, 1855-1860.	0.2	18
176	On the mechanism of coke formation in steam crackingâ€"conclusions from results obtained by tracer experiments. Carbon, 1988, 26, 117-124.	10.3	80
177	Zur Pyrolyse von 3-Ethylpent-2-en - Ein weiterer Hinweis auf eine Homoallyl-Umlagerung. Journal Fýr Praktische Chemie, 1988, 330, 677-682.	0.2	2
178	Rearrangement reactions in the thermal formation of aromatics from cycloolefins. 14C-labelling studies. Journal of Analytical and Applied Pyrolysis, 1988, 13, 259-275.	5 . 5	18
179	Tendencies of aromatization in steam cracking of hydrocarbons. Industrial & Engineering Chemistry Research, 1987, 26, 2393-2397.	3.7	11
180	Pyrolysis of [5-14C]-1-pentene-evidence for homoallylic rearrangements at 873 K. International Journal of Chemical Kinetics, 1986, 18, 159-163.	1.6	7

#	Article	IF	Citations
181	Formation of ethyl and vinyl aromatics during the pyrolysis of methyl aromatics and acetone. Journal of Analytical and Applied Pyrolysis, 1986, 9, 335-338.	5.5	1
182	Bestimmung der Isotopenverteilung in ¹⁴ C-markierten Kohlenwasserstoffen durch thermische Fragmentierung. Isotopes in Environmental and Health Studies, 1986, 22, 388-392.	0.2	5
183	Formation of aromatics during the pyrolysis of oligocyclic naphthenes. Journal of Analytical and Applied Pyrolysis, 1985, 7, 195-205.	5.5	14
184	Zur Pyrolyse von 1-14C-Pent-1-en. Journal Für Praktische Chemie, 1983, 325, 283-292.	0.2	5
185	Über die Pyrolyse von Pent-1-en-3,3-d2. Journal Für Praktische Chemie, 1983, 325, 375-381.	0.2	5
186	Über die Pyrolyse von Pent-1-en-4,4,5,5,5-d5. Journal Für Praktische Chemie, 1983, 325, 699-707.	0.2	4
187	Indications of a puzzling mechanism in the pyrolysis of 1,3-bitadiene. Tetrahedron Letters, 1983, 24, 869-872.	1.4	0
188	Synthese von Pent-1-en-3,3-d2 durch Wittig-Reaktion. Journal Fýr Praktische Chemie, 1981, 323, 992-994.	0.2	5
189	Untersuchungen zur Sulfochlorierung von Paraffinen. IV. Über die Sulfochlorierung von Isobutan. Journal Für Praktische Chemie, 1979, 321, 107-111.	0.2	5
190	Untersuchungen zur Sulfochlorierung von Paraffinen. V. Kinetische Untersuchungen über die Sulfochlorierung definierter Alkansulfochloride. Journal Für Praktische Chemie, 1979, 321, 279-292.	0.2	11
191	Untersuchungen zur Sulfochlorierung von Paraffinen. I Kinetische Untersuchungen ýber die Erstsulfochlorierung der n-Paraffine C6-C16. Journal Fýr Praktische Chemie, 1976, 318, 1019-1030.	0.2	20
192	Application of SPME to study sorption phenomena on dissolved humic organic matter. RSC Chromatography Monographs, 0, , 111-128.	0.1	8