Lefteris Doitsidis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1293559/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selecting a Robotic Platform for Education. , 2022, , .		7
2	Computer Vision Meets Educational Robotics. Electronics (Switzerland), 2021, 10, 730.	3.1	27
3	A ROS-Based Energy Management System for a Prototype Fuel Cell Hybrid Vehicle. Energies, 2021, 14, 1964.	3.1	3
4	Analysis and comparison of a single-material vs. multi-material chassis design for lightweight electric vehicles. International Journal of Vehicle Systems Modelling and Testing, 2021, 15, 60.	0.1	0
5	Analysis and comparison of a single-material vs. multi-material chassis design for lightweight electric vehicles. International Journal of Vehicle Systems Modelling and Testing, 2021, 15, 60.	0.1	0
6	HYDRA: Introducing a Low-Cost Framework for STEM Education Using Open Tools. Electronics (Switzerland), 2021, 10, 3056.	3.1	8
7	Efficient Gear Ratio Selection of a Single-Speed Drivetrain for Improved Electric Vehicle Energy Consumption. Sustainability, 2020, 12, 9254.	3.2	11
8	A Fuzzy Rule-Based Control System for Fast Line-Following Robots. , 2020, , .		4
9	Implementation of a Petri-net based Digital Twin for the development procedure of an Electric Vehicle. , 2020, , .		8
10	Educational Robotics: Platforms, Competitions and Expected Learning Outcomes. IEEE Access, 2020, 8, 219534-219562.	4.2	48
11	Experimental Research of Transmissions on Electric Vehicles' Energy Consumption. Energies, 2019, 12, 388.	3.1	31
12	Remote monitoring of the Bactrocera oleae (Gmelin) (Diptera: Tephritidae) population using an automated McPhail trap. Computers and Electronics in Agriculture, 2017, 137, 69-78.	7.7	33
13	Real-time adaptive multi-robot exploration with application to underwater map construction. Autonomous Robots, 2016, 40, 987-1015.	4.8	43
14	Employing Cellular Automata for Shaping Accurate Morphology Maps Using Scattered Data from Robotics' Missions. Emergence, Complexity and Computation, 2015, , 229-246.	0.3	0
15	Vision-Controlled Micro Flying Robots: From System Design to Autonomous Navigation and Mapping in GPS-Denied Environments. IEEE Robotics and Automation Magazine, 2014, 21, 26-40.	2.0	219
16	A Multi-Objective Exploration Strategy for Mobile Robots Under Operational Constraints. IEEE Access, 2013, 1, 691-702.	4.2	27
17	Autonomous navigation of teams of Unmanned Aerial or Underwater Vehicles for exploration of unknown static & dynamic environments. , 2013, , .		6

18 Distributed multi-robot coverage using micro aerial vehicles. , 2013, , .

LEFTERIS DOITSIDIS

#	Article	IF	CITATIONS
19	The NOPTILUS project: Autonomous Multi-AUV Navigation for Exploration of Unknown Environments. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 373-380.	0.4	12
20	Multi-robot three-dimensional coverage of unknown areas. International Journal of Robotics Research, 2012, 31, 738-752.	8.5	68
21	SFly: Swarm of micro flying robots. , 2012, , .		21
22	Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision. Autonomous Robots, 2012, 33, 173-188.	4.8	70
23	A generic framework for scalable and convergent multi-robot active simultaneous localization, mapping and target tracking. , 2011, , .		1
24	3D surveillance coverage using maps extracted by a monocular SLAM algorithm. , 2011, , .		1
25	3D surveillance coverage using maps extracted by a monocular SLAM algorithm. , 2011, , .		16
26	Multi-robot 3D coverage of unknown terrains. , 2011, , .		3
27	Adaptive-based distributed cooperative multi-robot coverage. , 2011, , .		18
28	Adaptive-based, scalable design for autonomous multi-robot surveillance. , 2010, , .		7
29	Cognitive-based adaptive control for cooperative multi-robot coverage. , 2010, , .		23
30	Scalable and convergent multi-robot passive and active sensing. , 2009, , .		2
31	Fitness functions in evolutionary robotics: A survey and analysis. Robotics and Autonomous Systems, 2009, 57, 345-370.	5.1	203
32	Evolution of Fuzzy Controllers for Robotic Vehicles: The Role of Fitness Function Selection. Journal of Intelligent and Robotic Systems: Theory and Applications, 2009, 56, 469-484.	3.4	8
33	A unified methodology for multi-robot passive & active sensing. , 2009, , .		0
34	A low cost modular robot vehicle design for research and education. , 2007, , .		14
35	Work-in-process scheduling by evolutionary tuned fuzzy controllers. International Journal of Advanced Manufacturing Technology, 2007, 34, 748-761.	3.0	17
36	An Empirical Study for Fitness Function Selection in Fuzzy Logic Controllers for Mobile Robot Navigation. Industrial Electronics Society (IECON), Annual Conference of IEEE, 2006, , .	0.0	1

LEFTERIS DOITSIDIS

#	Article	IF	CITATIONS
37	A case study of fuzzy-logic-based robot navigation. IEEE Robotics and Automation Magazine, 2006, 13, 93-107.	2.0	13
38	Autonomous Navigation of Unmanned Vehicles: A Fuzzy Logic Perspective. , 2005, , .		3
39	A framework for fuzzy logic based UAV navigation and control. , 2004, , .		57
40	Fuzzy logic based software control architecture for a skid steering vehicle. , 0, , .		3
41	Fuzzy logic based autonomous skid steering vehicle navigation. , 0, , .		25
42	Incorporation of MATLAB into a distributed behavioral robotics architecture. , 0, , .		4
43	Experimental validation of a MATLAB based control architecture for multiple robot outdoor navigation. , 0, , .		1
44	Work-in-process scheduling by evolutionary tuned distributed fuzzy controllers. , 0, , .		3