
Rachid Ouifki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1291480/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A combination therapy of oncolytic viruses and chimeric antigen receptor T cells: a mathematical model proof-of-concept. Mathematical Biosciences and Engineering, 2022, 19, 4429-4457.	1.9	8
2	Mathematical model for the estrogen paradox in breast cancer treatment. Journal of Mathematical Biology, 2022, 84, 28.	1.9	3
3	Natural Killer Cells Recruitment in Oncolytic Virotherapy: A Mathematical Model. Bulletin of Mathematical Biology, 2021, 83, 75.	1.9	10
4	Mathematical analysis of the impact of transmission-blocking drugs on the population dynamics of malaria. Applied Mathematics and Computation, 2021, 400, 126005.	2.2	8
5	Some mathematical tools for modelling malaria: a subjective survey. Biomath, 2021, 10, .	0.7	1
6	Assessing the role of human mobility on malaria transmission. Mathematical Biosciences, 2020, 320, 108304.	1.9	7
7	Epidemiological models with quadratic equation for endemic equilibria—A bifurcation atlas. Mathematical Methods in the Applied Sciences, 2020, 43, 10413-10429.	2.3	4
8	Mesenchymal stem cells used as carrier cells of oncolytic adenovirus results in enhanced oncolytic virotherapy. Scientific Reports, 2020, 10, 425.	3.3	37
9	The big unknown: The asymptomatic spread of COVID-19. Biomath, 2020, 9, .	0.7	11
10	Effect of mixed infection on TB dynamics. International Journal of Biomathematics, 2019, 12, 1950061.	2.9	0
11	Assessing the role of climate factors on malaria transmission dynamics in South Sudan. Mathematical Biosciences, 2019, 310, 13-23.	1.9	13
12	Climate-dependent malaria disease transmission model and its analysis. International Journal of Biomathematics, 2019, 12, 1950087.	2.9	6
13	On a three-stage structured model for the dynamics of malaria transmission with human treatment, adult vector demographics and one aquatic stage. Journal of Theoretical Biology, 2019, 481, 202-222.	1.7	10
14	Mathematical modeling of bone marrow – peripheral blood dynamics in the disease state based on current emerging paradigms, part II. Journal of Theoretical Biology, 2019, 460, 37-55.	1.7	4
15	Modelling the effect of bednet coverage on malaria transmission in South Sudan. PLoS ONE, 2018, 13, e0198280.	2.5	10
16	Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences and Engineering, 2018, 15, 1435-1463.	1.9	44
17	A nonstandard finite difference method for solving a mathematical model of HIV-TB co-infection. Journal of Difference Equations and Applications, 2017, 23, 1105-1132.	1.1	3
18	Evaluating the impact of two training interventions to improve diagnosis and case-management of malaria and pneumonia in Uganda. Epidemiology and Infection, 2017, 145, 194-207.	2.1	0

RACHID OUIFKI

#	Article	lF	CITATIONS
19	Oncolytic potency and reduced virus tumor-specificity in oncolytic virotherapy. A mathematical modelling approach. PLoS ONE, 2017, 12, e0184347.	2.5	44
20	Mathematical model of tumor–immune surveillance. Journal of Theoretical Biology, 2016, 404, 312-330.	1.7	63
21	Mathematical modeling of bone marrow – peripheral blood dynamics in the disease state based on current emerging paradigms, part I. Mathematical Biosciences, 2016, 274, 83-93.	1.9	3
22	Analysis of an HIV model with distributed delay and behavior change. International Journal of Biomathematics, 2015, 08, 1550017.	2.9	0
23	Analysis of a malaria model with a distributed delay. IMA Journal of Applied Mathematics, 2014, 79, 1139-1160.	1.6	4
24	Modelling the long-term impacts on affected children of adult HIV. Aids, 2014, 28, S269-S275.	2.2	14
25	A non-standard finite difference method to solve a model of HIV–Malaria co-infection. Journal of Difference Equations and Applications, 2014, 20, 354-378.	1.1	16
26	Modelling the Use of Insecticide-Treated Cattle to Control Tsetse and Trypanosoma brucei rhodesiense in a Multi-host Population. Bulletin of Mathematical Biology, 2014, 76, 673-696.	1.9	24
27	An unconditionally stable nonstandard finite difference method applied to a mathematical model of HIV infection. International Journal of Applied Mathematics and Computer Science, 2013, 23, 357-372.	1.5	11
28	Hopf bifurcation via the Poincaré procedure in delay-differential equations with two delays. Revista Matematica Complutense, 2013, 26, 193-213.	1.2	1
29	Optimal control strategies and cost-effectiveness analysis of a malaria model. BioSystems, 2013, 111, 83-101.	2.0	154
30	Modeling the Control of Trypanosomiasis Using Trypanocides or Insecticide-Treated Livestock. PLoS Neglected Tropical Diseases, 2012, 6, e1615.	3.0	58
31	A General HIV Incidence Inference Scheme Based on Likelihood of Individual Level Data and a Population Renewal Equation. PLoS ONE, 2012, 7, e44377.	2.5	15
32	A general model for mortality in adult tsetse (Glossina spp.). Medical and Veterinary Entomology, 2011, 25, 385-394.	1.5	25
33	Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. BioSystems, 2011, 106, 136-145.	2.0	125
34	On the Relationship between Age, Annual Rate of Infection, and Prevalence ofMycobacterium tuberculosisin a South African Township. Clinical Infectious Diseases, 2009, 48, 994-996.	5.8	6
35	Stability analysis of a model for HIV infection with RTI and three intracellular delays. BioSystems, 2009, 95, 1-6.	2.0	32
36	Modeling the joint epidemics of TB and HIV in a South African township. Journal of Mathematical Biology, 2008, 57, 557-593.	1.9	82

RACHID OUIFKI

#	Article	IF	CITATIONS
37	Growth rate and basic reproduction number for population models with a simple periodic factor. Mathematical Biosciences, 2007, 210, 647-658.	1.9	86
38	A model of HIV-1 infection with HAART therapy and intracellular delays. Discrete and Continuous Dynamical Systems - Series B, 2007, 8, 229-240.	0.9	6
39	Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure and Applied Analysis, 2003, 2, 147-158.	0.8	7
40	Periodic Solutions for a Class of Functional Differential Equations with State-Dependent Delay Close to Zero. Mathematical Models and Methods in Applied Sciences, 2003, 13, 807-841.	3.3	8