
Stephen W G Tait

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1291459/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial dynamics regulate genome stability via control of caspase-dependent DNA damage. Developmental Cell, 2022, 57, 1211-1225.e6.	7.0	37
2	Increased apoptotic sensitivity of glioblastoma enables therapeutic targeting by BH3-mimetics. Cell Death and Differentiation, 2022, 29, 2089-2104.	11.2	10
3	Killing cells using light (activated) sabers. Journal of Cell Biology, 2022, 221, .	5.2	0
4	Modulating mitofusins to control mitochondrial function and signaling. Nature Communications, 2022, 13, .	12.8	31
5	Mitochondrial quality control: from molecule to organelle. Cellular and Molecular Life Sciences, 2021, 78, 3853-3866.	5.4	56
6	Breast cancer dependence on MCL-1 is due to its canonical anti-apoptotic function. Cell Death and Differentiation, 2021, 28, 2589-2600.	11.2	28
7	BRD4-mediated repression of p53 is a target for combination therapy in AML. Nature Communications, 2021, 12, 241.	12.8	43
8	PINK1 drives production of mtDNA-containing extracellular vesicles to promote invasiveness. Journal of Cell Biology, 2021, 220, .	5.2	46
9	Apoptotic stress-induced FGF signalling promotes non-cell autonomous resistance to cell death. Nature Communications, 2021, 12, 6572.	12.8	28
10	Mitochondria as multifaceted regulators of cell death. Nature Reviews Molecular Cell Biology, 2020, 21, 85-100.	37.0	1,253
11	Quantitative in vivo bioluminescence imaging of orthotopic patient-derived glioblastoma xenografts. Scientific Reports, 2020, 10, 15361.	3.3	10
12	Targeting immunogenic cell death in cancer. Molecular Oncology, 2020, 14, 2994-3006.	4.6	383
13	Venetoclax causes metabolic reprogramming independent of BCL-2 inhibition. Cell Death and Disease, 2020, 11, 616.	6.3	50
14	ER Stress Leaves an Inflammatory TRAIL. Developmental Cell, 2020, 52, 678-680.	7.0	2
15	Mitochondrial <scp>DNA</scp> in inflammation and immunity. EMBO Reports, 2020, 21, e49799.	4.5	446
16	Stress-induced TRAILR2 expression overcomes TRAIL resistance in cancer cell spheroids. Cell Death and Differentiation, 2020, 27, 3037-3052.	11.2	17
17	Increasing the bactofection capacity of a mammalian expression vector by removal of the f1 ori. Cancer Gene Therapy, 2019, 26, 183-194.	4.6	11
18	Parkin inhibits necroptosis to prevent cancer. Nature Cell Biology, 2019, 21, 915-916.	10.3	12

#	Article	IF	CITATIONS
19	RIPK3 Activation Leads to Cytokine Synthesis that Continues after Loss of Cell Membrane Integrity. Cell Reports, 2019, 28, 2275-2287.e5.	6.4	85
20	Mitochondria and Inflammation: Cell Death Heats Up. Frontiers in Cell and Developmental Biology, 2019, 7, 100.	3.7	86
21	Mitochondria and pathogen immunity: from killer to firestarter. EMBO Journal, 2019, 38, .	7.8	12
22	Application of Mito-Priming to Generate BCL-2 Addicted Cells. Methods in Molecular Biology, 2019, 1877, 45-60.	0.9	1
23	Apoptosis and Cancer: Force Awakens, Phantom Menace, or Both?. International Review of Cell and Molecular Biology, 2018, 337, 135-152.	3.2	45
24	MCL-1 is a prognostic indicator and drug target in breast cancer. Cell Death and Disease, 2018, 9, 19.	6.3	134
25	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
26	Caspase-independent cell death: An anti-cancer double whammy. Cell Cycle, 2018, 17, 269-270.	2.6	15
27	BAX/BAK-Induced Apoptosis Results in Caspase-8-Dependent IL-1Î ² Maturation in Macrophages. Cell Reports, 2018, 25, 2354-2368.e5.	6.4	74
28	Targeting BCL-2 regulated apoptosis in cancer. Open Biology, 2018, 8, 180002.	3.6	377
29	Mitochondrial inner membrane permeabilisation enables mt <scp>DNA</scp> release during apoptosis. EMBO Journal, 2018, 37, .	7.8	313
30	p53 REEPs to sow ER–mitochondrial contacts. Cell Research, 2018, 28, 877-878.	12.0	2
31	MLKL Activation Triggers NLRP3-Mediated Processing and Release of IL-1Î ² Independently of Gasdermin-D. Journal of Immunology, 2017, 198, 2156-2164.	0.8	158
32	Coordination by Cdc42 of Actin, Contractility, and Adhesion for Melanoblast Movement in Mouse Skin. Current Biology, 2017, 27, 624-637.	3.9	38
33	Cancer therapy-induced PAFR ligand expression: any role for caspase activity?. Nature Reviews Cancer, 2017, 17, 253-253.	28.4	2
34	Retrograde signaling from autophagy modulates stress responses. Science Signaling, 2017, 10, .	3.6	65
35	RIPK3 Restricts Viral Pathogenesis via Cell Death-Independent Neuroinflammation. Cell, 2017, 169, 301-313.e11.	28.9	163
36	Depletion of mitochondria in mammalian cells through enforced mitophagy. Nature Protocols, 2017, 12, 183-194.	12.0	42

#	Article	IF	CITATIONS
37	RIPK3 promotes adenovirus type 5 activity. Cell Death and Disease, 2017, 8, 3206.	6.3	16
38	Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspaseÂdeficiency. Nature Cell Biology, 2017, 19, 1116-1129.	10.3	181
39	Metabolic Regulation of Immunity. , 2017, , 318-326.		1
40	Mitochondria are required for proâ€ageing features of the senescent phenotype. EMBO Journal, 2016, 35, 724-742.	7.8	527
41	Tight Sequestration of BH3 Proteins by BCL-xL at Subcellular Membranes Contributes to Apoptotic Resistance. Cell Reports, 2016, 17, 3347-3358.	6.4	44
42	Mitochondria and the hallmarks of cancer. FEBS Journal, 2016, 283, 803-814.	4.7	100
43	Mechanisms of mitophagy: putting the powerhouse into the doghouse. Biological Chemistry, 2016, 397, 617-635.	2.5	8
44	Mitochondrial Permeabilization: From Lethality to Vitality. , 2016, , 213-226.		3
45	A fate worse than death: apoptosis as an oncogenic process. Nature Reviews Cancer, 2016, 16, 539-548.	28.4	325
46	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
47	Mito-priming as a method to engineer Bcl-2 addiction. Nature Communications, 2016, 7, 10538.	12.8	53
48	Limited Mitochondrial Permeabilization Causes DNA Damage and Genomic Instability in the Absence of Cell Death. Molecular Cell, 2015, 57, 860-872.	9.7	341
49	Necroptosis: Fifty shades of RIPKs. Molecular and Cellular Oncology, 2015, 2, e965638.	0.7	2
50	Using enhanced-mitophagy to measure autophagic flux. Methods, 2015, 75, 105-111.	3.8	17
51	Differential retrotranslocation of mitochondrial Bax and Bak. EMBO Journal, 2015, 34, 67-80.	7.8	141
52	Ubiquitination and proteasomal degradation of ATG12 regulates its proapoptotic activity. Autophagy, 2014, 10, 2269-2278.	9.1	48
53	Killing the Killer: PARC/CUL9 Promotes Cell Survival by Destroying Cytochrome c. Science Signaling, 2014, 7, pe17.	3.6	7
54	Die another way – non-apoptotic mechanisms of cell death. Journal of Cell Science, 2014, 127, 2135-2144.	2.0	299

#	Article	IF	CITATIONS
55	RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis. Cell Death and Differentiation, 2014, 21, 1511-1521.	11.2	242
56	DNA: leukemia's secret weapon of bone mass destruction. Oncogene, 2013, 32, 5199-5200.	5.9	1
57	Mitochondrial Regulation of Cell Death. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008706-a008706.	5.5	396
58	Widespread Mitochondrial Depletion via Mitophagy Does Not Compromise Necroptosis. Cell Reports, 2013, 5, 878-885.	6.4	240
59	Mitochondrial pathway of apoptosis is ancestral in metazoans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4904-4909.	7.1	104
60	Endoplasmic reticulum protein BI-1 regulates Ca ²⁺ -mediated bioenergetics to promote autophagy. Genes and Development, 2012, 26, 1041-1054.	5.9	83
61	Mitochondria and cell signalling. Journal of Cell Science, 2012, 125, 807-815.	2.0	345
62	Atg8 Transfer from Atg7 to Atg3: A Distinctive E1-E2 Architecture and Mechanism in the Autophagy Pathway. Molecular Cell, 2011, 44, 451-461.	9.7	135
63	A Unified Model of Mammalian BCL-2 Protein Family Interactions at the Mitochondria. Molecular Cell, 2011, 44, 517-531.	9.7	502
64	Bid can mediate a pro-apoptotic response to etoposide and ionizing radiation without cleavage in its unstructured loop and in the absence of p53. Oncogene, 2011, 30, 3636-3647.	5.9	13
65	MK-STYX, a Catalytically Inactive Phosphatase Regulating Mitochondrially Dependent Apoptosis. Molecular and Cellular Biology, 2011, 31, 1357-1368.	2.3	34
66	TLR2 and RIP2 Pathways Mediate Autophagy of Listeria monocytogenes via Extracellular Signal-regulated Kinase (ERK) Activation. Journal of Biological Chemistry, 2011, 286, 42981-42991.	3.4	119
67	Glucose deprivation induces an atypical form of apoptosis mediated by caspase-8 in Bax-, Bak-deficient cells. Cell Death and Differentiation, 2010, 17, 1335-1344.	11.2	66
68	Smac/DIABLO release from mitochondria and XIAP inhibition are essential to limit clonogenicity of Type I tumor cells after TRAIL receptor stimulation. Cell Death and Differentiation, 2010, 17, 1613-1623.	11.2	30
69	Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Reviews Molecular Cell Biology, 2010, 11, 621-632.	37.0	2,075
70	Cell survival in tough times: The mitochondrial recovery plan. Cell Cycle, 2010, 9, 4254-4255.	2.6	3
71	Resistance to Caspase-Independent Cell Death Requires Persistence of Intact Mitochondria. Developmental Cell, 2010, 18, 802-813.	7.0	165
72	Live to Dead Cell Imaging. Methods in Molecular Biology, 2009, 559, 33-48.	0.9	5

#	Article	IF	CITATIONS
73	Characterization of Cytoplasmic Caspase-2 Activation by Induced Proximity. Molecular Cell, 2009, 35, 830-840.	9.7	131
74	lonizing radiation modulates the TRAIL death-inducing signaling complex, allowing bypass of the mitochondrial apoptosis pathway. Oncogene, 2008, 27, 574-584.	5.9	37
75	Caspase-independent cell death: leaving the set without the final cut. Oncogene, 2008, 27, 6452-6461.	5.9	303
76	Apoptosis induction by Bid requires unconventional ubiquitination and degradation of its N-terminal fragment. Journal of Cell Biology, 2007, 179, 1453-1466.	5.2	104
77	GAPDH and Autophagy Preserve Survival after Apoptotic Cytochrome c Release in the Absence of Caspase Activation. Cell, 2007, 129, 983-997.	28.9	464
78	GAPDH and Autophagy Preserve Survival after Apoptotic Cytochrome c Release in the Absence of Caspase Activation. Cell, 2007, 130, 385.	28.9	0
79	Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature, 2007, 450, 1253-1257.	27.8	1,181
80	The mitogen-activated protein kinase pathway can inhibit TRAIL-induced apoptosis by prohibiting association of truncated Bid with mitochondria. Cell Death and Differentiation, 2006, 13, 1857-1865.	11.2	16
81	Requirement for Aspartate-cleaved Bid in Apoptosis Signaling by DNA-damaging Anti-cancer Regimens. Journal of Biological Chemistry, 2004, 279, 28771-28780.	3.4	37
82	Human death effector domain-associated factor interacts with the viral apoptosis agonist Apoptin and exerts tumor-preferential cell killing. Cell Death and Differentiation, 2004, 11, 564-573.	11.2	72
83	Mechanism of action of Drosophila Reaper in mammalian cells: Reaper globally inhibits protein synthesis and induces apoptosis independent of mitochondrial permeability. Cell Death and Differentiation, 2004, 11, 800-811.	11.2	16
84	TRAIL Receptor and CD95 Signal to Mitochondria via FADD, Caspase-8/10, Bid, and Bax but Differentially Regulate Events Downstream from Truncated Bid. Journal of Biological Chemistry, 2002, 277, 40760-40767.	3.4	55
85	Bcl-2 Family Member Bfl-1/A1 Sequesters Truncated Bid to Inhibit Its Collaboration with Pro-apoptotic Bak or Bax. Journal of Biological Chemistry, 2002, 277, 22781-22788.	3.4	141
86	African Swine Fever Virus Infection of Porcine Aortic Endothelial Cells Leads to Inhibition of Inflammatory Responses, Activation of the Thrombotic State, and Apoptosis. Journal of Virology, 2001, 75, 10372-10382.	3.4	51
87	Mechanism of Inactivation of NF-κB by a Viral Homologue of IκBα. Journal of Biological Chemistry, 2000, 275, 34656-34664.	3.4	77