
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1289318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>ABI3</scp> ―and <scp>PIF1</scp> â€mediated regulation of <scp> <i>GIG1</i> </scp> enhances seed germination by detoxification of methylglyoxal in Arabidopsis. Plant Journal, 2022, , .	5.7	4
2	Signals Light Signaling in Plants. , 2021, , 78-89.		4
3	Direct phosphorylation of HY5 by SPA kinases to regulate photomorphogenesis in Arabidopsis. New Phytologist, 2021, 230, 2311-2326.	7.3	35
4	Spatial regulation of thermomorphogenesis by HY5 and PIF4 in Arabidopsis. Nature Communications, 2021, 12, 3656.	12.8	50
5	Phytochrome Signaling Networks. Annual Review of Plant Biology, 2021, 72, 217-244.	18.7	130
6	An autoregulatory negative feedback loop controls thermomorphogenesis in Arabidopsis. PLoS Genetics, 2021, 17, e1009595.	3.5	17
7	Phytochrome B triggers light-dependent chromatin remodelling through the PRC2-associated PHD finger protein VIL1. Nature Plants, 2021, 7, 1213-1219.	9.3	19
8	Light-regulated pre-mRNA splicing in plants. Current Opinion in Plant Biology, 2021, 63, 102037.	7.1	16
9	SPAs promote thermomorphogenesis via regulating the phyB-PIF4 module in <i>Arabidopsis</i> . Development (Cambridge), 2020, 147, .	2.5	33
10	A COP1â€PIFâ€HEC regulatory module fineâ€ŧunes photomorphogenesis in <i>Arabidopsis</i> . Plant Journal, 2020, 104, 113-123.	5.7	18
11	PCH1 and PCHL Directly Interact with PIF1, Promote Its Degradation, and Inhibit Its Transcriptional Function during Photomorphogenesis. Molecular Plant, 2020, 13, 499-514.	8.3	15
12	Genomic evidence reveals <scp>SPA</scp> â€regulated developmental and metabolic pathways in darkâ€grown <scp><i>Arabidopsis</i></scp> seedlings. Physiologia Plantarum, 2020, 169, 380-396.	5.2	9
13	Rapid Examination of Phytochrome–Phytochrome Interacting Factor (PIF) Interaction by In Vitro Coimmunoprecipitation Assay. Methods in Molecular Biology, 2019, 2026, 21-28.	0.9	3
14	Characterization of Light-Regulated Protein–Protein Interactions by In Vivo Coimmunoprecipitation (Co-IP) Assays in Plants. Methods in Molecular Biology, 2019, 2026, 29-39.	0.9	7
15	Coordinated Regulation of Pre-mRNA Splicing by the SFPS-RRC1 Complex to Promote Photomorphogenesis. Plant Cell, 2019, 31, 2052-2069.	6.6	38
16	A phyB-PIF1-SPA1 kinase regulatory complex promotes photomorphogenesis in Arabidopsis. Nature Communications, 2019, 10, 4216.	12.8	80
17	Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. Seminars in Cell and Developmental Biology, 2019, 92, 114-121.	5.0	166
18	Direct Convergence of Light and Auxin Signaling Pathways in Arabidopsis. Molecular Plant, 2018, 11, 515-517	8.3	9

#	Article	IF	CITATIONS
19	KELCH F-BOX protein positively influences Arabidopsis seed germination by targeting PHYTOCHROME-INTERACTING FACTOR1. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4120-E4129.	7.1	53
20	Phytochromes and Phytochrome Interacting Factors. Plant Physiology, 2018, 176, 1025-1038.	4.8	334
21	PIF-mediated sucrose regulation of the circadian oscillator is light quality and temperature dependent. Genes, 2018, 9, 628.	2.4	11
22	Molecular bases for the constitutive photomorphogenic phenotypes in <i>Arabidopsis</i> . Development (Cambridge), 2018, 145, .	2.5	51
23	COP1 SUPPRESSOR 4 promotes seedling photomorphogenesis by repressing <i>CCA1</i> and <i>PIF4</i> expression in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11631-11636.	7.1	12
24	Diurnal down-regulation of ethylene biosynthesis mediates biomass heterosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5606-5611.	7.1	49
25	Dynamic regulation of <scp>PIF</scp> 5 by <scp>COP</scp> 1– <scp>SPA</scp> complex to optimize photomorphogenesis in Arabidopsis. Plant Journal, 2018, 96, 260-273.	5.7	35
26	Characterization of Phytochrome Interacting Factors from the Moss <i>Physcomitrella patens</i> Illustrates Conservation of Phytochrome Signaling Modules in Land Plants. Plant Cell, 2017, 29, 310-330.	6.6	61
27	Reciprocal proteasome-mediated degradation of PIFs and HFR1 underlying photomorphogenic development in <i>Arabidopsis</i> . Development (Cambridge), 2017, 144, 1831-1840.	2.5	43
28	<scp>PHYTOCHROME INTERACTING FACTORS</scp> mediate metabolic control of the circadian system in Arabidopsis. New Phytologist, 2017, 215, 217-228.	7.3	63
29	SPF45-related splicing factor for phytochrome signaling promotes photomorphogenesis by regulating pre-mRNA splicing in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7018-E7027.	7.1	61
30	Expanding Roles of PIFs in Signal Integration from Multiple Processes. Molecular Plant, 2017, 10, 1035-1046.	8.3	172
31	PCH1 and PCHL promote photomorphogenesis in plants by controlling phytochrome B dark reversion. Nature Communications, 2017, 8, 2221.	12.8	41
32	A Protein-Based Genetic Screening Uncovers Mutants Involved in Phytochrome Signaling in Arabidopsis. Frontiers in Plant Science, 2016, 7, 1086.	3.6	1
33	A Negative Feedback Loop between PHYTOCHROME INTERACTING FACTORs and HECATE Proteins Fine-Tunes Photomorphogenesis in Arabidopsis. Plant Cell, 2016, 28, 855-874.	6.6	42
34	NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day in <i>Arabidopsis</i> . Development (Cambridge), 2016, 143, 682-90.	2.5	35
35	CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1. Nature Communications, 2015, 6, 7245.	12.8	97
36	Light-Activated Phytochrome A and B Interact with Members of the SPA Family to Promote Photomorphogenesis in Arabidopsis by Reorganizing the COP1/SPA Complex. Plant Cell, 2015, 27, 189-201.	6.6	279

#	Article	IF	CITATIONS
37	Arabidopsis casein kinase 2 α4 subunit regulates various developmental pathways in a functionally overlapping manner. Plant Science, 2015, 236, 295-303.	3.6	16
38	Illuminating Progress in Phytochrome-Mediated Light Signaling Pathways. Trends in Plant Science, 2015, 20, 641-650.	8.8	179
39	Suicidal Co-Degradation of the Phytochrome Interacting Factor 3 and Phytochrome B in Response to Light. Molecular Plant, 2014, 7, 1709-1711.	8.3	11
40	Regulation of Drought Tolerance by the F-Box Protein MAX2 in Arabidopsis. Plant Physiology, 2014, 164, 424-439.	4.8	254
41	Expanding roles of protein kinase CK2 in regulating plant growth and development. Journal of Experimental Botany, 2014, 65, 2883-2893.	4.8	92
42	Phytochrome A Antagonizes PHYTOCHROME INTERACTING FACTOR 1 to Prevent Over-Activation of Photomorphogenesis. Molecular Plant, 2014, 7, 1415-1428.	8.3	11
43	PHYTOCHROME INTERACTING FACTOR1 Enhances the E3 Ligase Activity of CONSTITUTIVE PHOTOMORPHOGENIC1 to Synergistically Repress Photomorphogenesis in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 1992-2006.	6.6	78
44	Does CK2 affect flowering time by modulating the autonomous pathway in Arabidopsis?. Plant Signaling and Behavior, 2012, 7, 292-294.	2.4	18
45	MAX2 Affects Multiple Hormones to Promote Photomorphogenesis. Molecular Plant, 2012, 5, 750-762.	8.3	104
46	Casein kinase II α subunits affect multiple developmental and stressâ€responsive pathways in Arabidopsis. Plant Journal, 2012, 69, 343-354.	5.7	50
47	Mapping Functional Domains of Transcription Factors. Methods in Molecular Biology, 2011, 754, 167-184.	0.9	8
48	Dimerization and blue light regulation of PIF1 interacting bHLH proteins in Arabidopsis. Plant Molecular Biology, 2011, 77, 501-511.	3.9	40
49	Multiple kinases promote light-induced degradation of PIF1. Plant Signaling and Behavior, 2011, 6, 1119-1121.	2.4	20
50	SCAR Mediates Light-Induced Root Elongation in <i>Arabidopsis</i> through Photoreceptors and Proteasomes Â. Plant Cell, 2011, 23, 3610-3626.	6.6	115
51	Phosphorylation by CK2 Enhances the Rapid Light-induced Degradation of Phytochrome Interacting Factor 1 in Arabidopsis. Journal of Biological Chemistry, 2011, 286, 12066-12074.	3.4	84
52	Microhomology-mediated and nonhomologous repair of a double-strand break in the chloroplast genome of <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13954-13959.	7.1	47
53	Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11626-11631.	7.1	361
54	Blue Light Induces Degradation of the Negative Regulator Phytochrome Interacting Factor 1 to Promote Photomorphogenic Development of Arabidopsis Seedlings. Genetics, 2009, 182, 161-171.	2.9	43

#	Article	IF	CITATIONS
55	Multiple Phytochrome-Interacting bHLH Transcription Factors Repress Premature Seedling Photomorphogenesis in Darkness. Current Biology, 2008, 18, 1815-1823.	3.9	513
56	Light-Induced Phosphorylation and Degradation of the Negative Regulator PHYTOCHROME-INTERACTING FACTOR1 from <i>Arabidopsis</i> Depend upon Its Direct Physical Interactions with Photoactivated Phytochromes. Plant Cell, 2008, 20, 1586-1602.	6.6	250
57	PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9433-9438.	7.1	204
58	A New CULLIN 1 Mutant Has Altered Responses to Hormones and Light in Arabidopsis. Plant Physiology, 2007, 143, 684-696.	4.8	74
59	The F-Box Protein MAX2 Functions as a Positive Regulator of Photomorphogenesis in Arabidopsis. Plant Physiology, 2007, 145, 1471-1483.	4.8	196
60	Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. Trends in Plant Science, 2007, 12, 514-521.	8.8	409
61	Degradation of negative regulators: a common theme in hormone and light signaling networks?. Trends in Plant Science, 2006, 11, 4-7.	8.8	57
62	PIF1 is regulated by light-mediated degradation through the ubiquitin-26S proteasome pathway to optimize photomorphogenesis of seedlings in Arabidopsis. Plant Journal, 2005, 44, 1023-1035.	5.7	219
63	Phytochrome Signaling. , 2005, , 151-170.		18
64	A Novel Molecular Recognition Motif Necessary for Targeting Photoactivated Phytochrome Signaling to Specific Basic Helix-Loop-Helix Transcription Factors[W]. Plant Cell, 2004, 16, 3033-3044.	6.6	314
65	PHYTOCHROME-INTERACTING FACTOR 1 Is a Critical bHLH Regulator of Chlorophyll Biosynthesis. Science, 2004, 305, 1937-1941.	12.6	434
66	Nuclear translocation of the photoreceptor phytochrome B is necessary for its biological function in seedling photomorphogenesis. Plant Journal, 2003, 35, 660-664.	5.7	117
67	Update on the Basic Helix-Loop-Helix Transcription Factor Gene Family in Arabidopsis thaliana. Plant Cell, 2003, 15, 2497-2502.	6.6	282
68	The Arabidopsis Basic/Helix-Loop-Helix Transcription Factor Family[W]. Plant Cell, 2003, 15, 1749-1770.	6.6	1,109
69	Cre/lox site-specific recombination controls the excision of a transgene from the rice genome. Theoretical and Applied Genetics, 2002, 104, 518-525.	3.6	98
70	A light-switchable gene promoter system. Nature Biotechnology, 2002, 20, 1041-1044.	17.5	553
71	PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO Journal, 2002, 21, 2441-2450.	7.8	482
72	SRL1: a new locus specific to the phyB-signaling pathway in Arabidopsis. Plant Journal, 2000, 23, 461-470.	5.7	24

#	Article	IF	CITATIONS
73	GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9789-9794.	7.1	325
74	Direct Targeting of Light Signals to a Promoter Element-Bound Transcription Factor. Science, 2000, 288, 859-863.	12.6	629
75	An anaerobically inducible early (aie) gene family from rice. , 1999, 40, 591-601.		21
76	Molecular characterization of pdc2 and mapping of three pdc genes from rice. Theoretical and Applied Genetics, 1999, 98, 815-824.	3.6	10
77	Characterization of pyruvate decarboxylase genes from rice. Plant Molecular Biology, 1996, 31, 761-770.	3.9	42
78	Sequence of a cDNA from Oryza sativa (L.) Encoding the Pyruvate Decarboxylase 1 Gene. Plant Physiology, 1994, 106, 799-800.	4.8	23