Casper Wilkens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1289105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of a Novel Glucuronan Lyase System in <i>Trichoderma parareesei</i> . Applied and Environmental Microbiology, 2022, 88, AEM0181921.	3.1	8
2	Bioinformatics based discovery of new keratinases in protease family M36. New Biotechnology, 2022, 68, 19-27.	4.4	15
3	A CH115 α-glucuronidase structure reveals dimerization-mediated substrate binding and a proton wire potentially important for catalysis. Acta Crystallographica Section D: Structural Biology, 2022, 78, 658-668.	2.3	2
4	Specificities and Synergistic Actions of Novel PL8 and PL7 Alginate Lyases from the Marine Fungus Paradendryphiella salina. Journal of Fungi (Basel, Switzerland), 2021, 7, 80.	3.5	17
5	Feruloylated Arabinoxylan and Oligosaccharides: Chemistry, Nutritional Functions, and Options for Enzymatic Modification. Annual Review of Food Science and Technology, 2021, 12, 331-354.	9.9	25
6	Microbial enzymes catalyzing keratin degradation: Classification, structure, function. Biotechnology Advances, 2020, 44, 107607.	11.7	113
7	Proteomic enzyme analysis of the marine fungus Paradendryphiella salina reveals alginate lyase as a minimal adaptation strategy for brown algae degradation. Scientific Reports, 2019, 9, 12338.	3.3	34
8	A carbohydrate-binding family 48 module enables feruloyl esterase action on polymeric arabinoxylan. Journal of Biological Chemistry, 2019, 294, 17339-17353.	3.4	21
9	Novel xylanolytic triple domain enzyme targeted at feruloylated arabinoxylan degradation. Enzyme and Microbial Technology, 2019, 129, 109353.	3.2	15
10	Asp271 is critical for substrate interaction with the surface binding site in βâ€∎garase a from <i>Zobellia galactanivorans</i> . Proteins: Structure, Function and Bioinformatics, 2019, 87, 34-40.	2.6	0
11	Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes. Glycobiology, 2018, 28, 3-8.	2.5	175
12	Functional Roles of Starch Binding Domains and Surface Binding Sites in Enzymes Involved in Starch Biosynthesis. Frontiers in Plant Science, 2018, 9, 1652.	3.6	38
13	Affinity Electrophoresis for Analysis of Catalytic Module-Carbohydrate Interactions. Methods in Molecular Biology, 2017, 1588, 119-127.	0.9	6
14	GH62 arabinofuranosidases: Structure, function and applications. Biotechnology Advances, 2017, 35, 792-804.	11.7	64
15	Diversity of microbial carbohydrate-active enzymes in Danish anaerobic digesters fed with wastewater treatment sludge. Biotechnology for Biofuels, 2017, 10, 158.	6.2	35
16	Development of novel monoclonal antibodies against starch and ulvan - implications for antibody production against polysaccharides with limited immunogenicity. Scientific Reports, 2017, 7, 9326.	3.3	18
17	Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes. PLoS ONE, 2016, 11, e0160112.	2.5	22
18	Plant αâ€glucan phosphatases SEX4 and LSF2 display different affinity for amylopectin and amylose. FEBS Letters, 2016, 590, 118-128.	2.8	18

CASPER WILKENS

#	Article	IF	CITATIONS
19	An efficient arabinoxylan-debranching α-l-arabinofuranosidase of family GH62 from Aspergillus nidulans contains a secondary carbohydrate binding site. Applied Microbiology and Biotechnology, 2016, 100, 6265-6277.	3.6	23
20	Analysis of Surface Binding Sites (SBS) within GH62, GH13, and GH77. Journal of Applied Glycoscience (1999), 2015, 62, 87-93.	0.7	8
21	Selectivity of the surface binding site (SBS) on barley starch synthase I. Biologia (Poland), 2014, 69, 1118-1121.	1.5	10
22	Purification, crystal structure determination and functional characterization of type III antifreeze proteins from the European eelpout Zoarces viviparus. Cryobiology, 2014, 69, 163-168.	0.7	15
23	Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77 — a mini-review. Biologia (Poland), 2014, 69, 705-712.	1.5	55
24	Surface Binding Sites (SBSs), Mechanism and Regulation of Enzymes Degrading Amylopectin and α-Limit Dextrins. Journal of Applied Glycoscience (1999), 2013, 60, 101-109.	0.7	1
25	Hyperactive antifreeze proteins from longhorn beetles: Some structural insights. Journal of Insect Physiology, 2012, 58, 1502-1510.	2.0	37