List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1288201/publications.pdf Version: 2024-02-01

Τλκέο Μινιλαι

#	Article	IF	CITATIONS
1	Self-Organizing, Environmentally Stable, and Low-Cost Copper–Nickel Complex Inks for Printed Flexible Electronics. ACS Applied Materials & Interfaces, 2022, 14, 8146-8156.	8.0	9
2	Polymer-based dielectrics with high permittivity and low dielectric loss for flexible electronics. Journal of Materials Chemistry C, 2022, 10, 6196-6221.	5.5	41
3	Resistance-switchable conjugated polyrotaxane for flexible high-performance RRAMs. Materials Horizons, 2022, 9, 1526-1535.	12.2	9
4	Direct fabrication of high-resolution and high-performance flexible electronics via surface-activation-localized electroless plating. Chemical Engineering Journal, 2021, 416, 127644.	12.7	17
5	Solution-processed electronics for artificial synapses. Materials Horizons, 2021, 8, 447-470.	12.2	74
6	Wafer-scale single crystals: crystal growth mechanisms, fabrication methods, and functional applications. Journal of Materials Chemistry C, 2021, 9, 7829-7851.	5.5	11
7	Solutionâ€Processable Multifused Thiophene Small Molecules and Conjugated Polymer Semiconducting Blend for Organic Field Effect Transistor Application. Advanced Materials Technologies, 2021, 6, 2001028.	5.8	14
8	Dual Surface Architectonics for Directed Selfâ€Assembly of Ultrahighâ€Resolution Electronics. Small, 2021, 17, e2101754.	10.0	10
9	Layerâ€Byâ€Layer Printing Strategy for Highâ€Performance Flexible Electronic Devices with Lowâ€Temperature Catalyzed Solutionâ€Processed SiO 2. Small Methods, 2021, 5, 2100263.	8.6	8
10	Evaluation of Leakage Current and Leakage Path of Gate-Insulating Layer Used in Organic Thin-Film Transistors under Mechanical Loading. Journal of Japan Institute of Electronics Packaging, 2021, 24, 586-594.	0.1	0
11	Rupture of bar-coated liquid films on wettability-patterned surfaces. The Proceedings of Mechanical Engineering Congress Japan, 2021, 2021, J222-04.	0.0	0
12	The rise of conductive copper inks: challenges and perspectives. Applied Materials Today, 2020, 18, 100451.	4.3	75
13	A multidimensional scheme of characterization for performance deterioration behavior of flexible devices under bending deformation. Thin Solid Films, 2020, 694, 137613.	1.8	3
14	Quinoidal thioalkyl-substituted bithiophene small molecule semiconductors for n-type organic field effect transistors. Journal of Materials Chemistry C, 2020, 8, 15450-15458.	5.5	12
15	Optical microresonator arrays of fluorescence-switchable diarylethenes with unreplicable spectral fingerprints. Materials Horizons, 2020, 7, 1801-1808.	12.2	36
16	Operational Stability Enhancement of Polymeric Organic Fieldâ€Effect Transistors by Amorphous Perfluoropolymers Chemically Anchored to Gate Dielectric Surfaces. Advanced Electronic Materials, 2020, 6, 2000161.	5.1	17
17	Wafer-scale and deterministic patterned growth of monolayer MoS ₂ <i>via</i> vapor–liquid–solid method. Nanoscale, 2019, 11, 16122-16129.	5.6	76
18	Homogeneous Dewetting on Large-Scale Microdroplet Arrays for Solution-Processing Electronics. , 2019, , .		0

#	Article	IF	CITATIONS
19	Air-stable Cu complex inks for printed electronics with high conductivity and high reliability. , 2019, , .		2
20	Polymerâ€Based Organic Fieldâ€Effect Transistors with Active Layers Aligned by Highly Hydrophobic Nanogrooved Surfaces. Advanced Functional Materials, 2019, 29, 1905365.	14.9	16
21	Fabrication of Two-Dimensional Crystalline Organic Films by Tilted Spin Coating for High-Performance Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11, 7226-7234.	8.0	24
22	A General Approach to Probe Dynamic Operation and Carrier Mobility in Fieldâ€Effect Transistors with Nonuniform Accumulation. Advanced Functional Materials, 2019, 29, 1901700.	14.9	22
23	Rapid Laser Annealing of Silver Electrodes for Printing Organic Thin-Film Transistors on Plastic Substrates. IEEE Transactions on Electron Devices, 2019, 66, 2729-2734.	3.0	7
24	3D cross-linking N-doped graphene framework for high sulfur nanocrystal storage. Journal Physics D: Applied Physics, 2019, 52, 295502.	2.8	6
25	:Hydrogen Doping Oxide Transistors: Analysis of Ultrahigh Apparent Mobility in Oxide Fieldâ€Effect Transistors (Adv. Sci. 7/2019). Advanced Science, 2019, 6, 1970040.	11.2	6
26	Analysis of Ultrahigh Apparent Mobility in Oxide Fieldâ€Effect Transistors. Advanced Science, 2019, 6, 1801189.	11.2	40
27	Room-temperature printing of CNTs-based flexible TFTs with high performance. , 2019, , .		0
28	Performance deterioration behavior of printed organic semiconductor flexible micro transistor under repeated bending deformation. The Proceedings of Mechanical Engineering Congress Japan, 2019, 2019, J22315.	0.0	0
29	Layer-by-layer printing non-volatile organic thin-film transistor memory with a planarly-oriented DNA-complex dielectric. Organic Electronics, 2018, 55, 75-81.	2.6	10
30	Organic thin-film transistors with over 10 cm2/Vs mobility through low-temperature solution coating. Journal of Information Display, 2018, 19, 71-80.	4.0	9
31	Recyclable Oil-Absorption Foams via Secondary Phase Separation. ACS Sustainable Chemistry and Engineering, 2018, 6, 13834-13843.	6.7	39
32	Solution-processable liquid crystalline chrysene semiconductors with wide band gap: Self-organization and carrier transport properties. Organic Electronics, 2018, 63, 184-193.	2.6	7
33	Essential Effects on the Mobility Extraction Reliability for Organic Transistors. Advanced Functional Materials, 2018, 28, 1803907.	14.9	54
34	DNA as Functional Material in Organic-Based Electronics. Applied Sciences (Switzerland), 2018, 8, 90.	2.5	16
35	Functional biomaterials towards flexible electronics and sensors. Biosensors and Bioelectronics, 2018, 119, 237-251.	10.1	139
36	Spatially Uniform Thin-Film Formation of Polymeric Organic Semiconductors on Lyophobic Gate Insulator Surfaces by Self-Assisted Flow-Coating. ACS Applied Materials & Interfaces, 2017, 9, 6237-6245.	8.0	13

#	Article	IF	CITATIONS
37	Ultra-high-resolution printing of flexible organic thin-film transistors. Journal of Information Display, 2017, 18, 93-99.	4.0	13
38	A unified understanding of charge transport in organic semiconductors: the importance of attenuated delocalization for the carriers. Materials Horizons, 2017, 4, 608-618.	12.2	146
39	Generating one-dimensional micro- or nano-structures with in-plane alignment by vapor-driven wetting kinetics. Materials Horizons, 2017, 4, 259-267.	12.2	9
40	Device Physics of Contact Issues for the Overestimation and Underestimation of Carrier Mobility in Field-Effect Transistors. Physical Review Applied, 2017, 8, .	3.8	183
41	Homogeneous dewetting on large-scale microdroplet arrays for solution-processed electronics. NPG Asia Materials, 2017, 9, e409-e409.	7.9	31
42	Spontaneous Patterning of Electronic Circuits by Surface Selective Deposition. Hyomen Kagaku, 2017, 38, 222-227.	0.0	0
43	High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016). Advanced Materials, 2016, 28, 6768-6768.	21.0	5
44	Universal diffusion-limited injection and the hook effect in organic thin-film transistors. Scientific Reports, 2016, 6, 29811.	3.3	23
45	Self-assembling diacetylene molecules on atomically flat insulators. Physical Chemistry Chemical Physics, 2016, 18, 31600-31605.	2.8	8
46	Spontaneous Patterning of Highâ€Resolution Electronics via Parallel Vacuum Ultraviolet. Advanced Materials, 2016, 28, 6568-6573.	21.0	60
47	Microchannel Wetting for Controllable Patterning and Alignment of Silver Nanowire with High Resolution. ACS Applied Materials & amp; Interfaces, 2015, 7, 21433-21441.	8.0	60
48	Direct and quantitative understanding of the non-Ohmic contact resistance in organic and oxide thin-film transistors. Organic Electronics, 2015, 27, 253-258.	2.6	43
49	Significant roles of low-temperature post-metallization annealing in solution-processed oxide thin-film transistors. Applied Physics Letters, 2014, 105, .	3.3	24
50	Large [6,6]-phenyl C61 butyric acid methyl (PCBM) hexagonal crystals grown by solvent-vapor annealing. Materials Chemistry and Physics, 2014, 145, 327-333.	4.0	13
51	Evaluating injection and transport properties of organic field-effect transistors by the convergence point in transfer-length method. Applied Physics Letters, 2014, 104, .	3.3	20
52	Roomâ€Temperature Printing of Organic Thinâ€Film Transistors with Ï€â€Junction Gold Nanoparticles. Advanced Functional Materials, 2014, 24, 4886-4892.	14.9	118
53	Improving solution-processed n-type organic field-effect transistors by transfer-printed metal/semiconductor and semiconductor/semiconductor heterojunctions. Organic Electronics, 2014, 15, 1884-1889.	2.6	16
54	Strainâ€Tunable Superconducting Fieldâ€Effect Transistor with an Organic Stronglyâ€Correlated Electron System. Advanced Materials, 2014, 26, 3490-3495.	21.0	29

#	Article	IF	CITATIONS
55	Critical Impact of Gate Dielectric Interfaces on the Contact Resistance of High-Performance Organic Field-Effect Transistors. Journal of Physical Chemistry C, 2013, 117, 12337-12345.	3.1	98
56	Surface Selectively Deposited Organic Single-crystal Transistor Arrays with High Device Performance. Molecular Crystals and Liquid Crystals, 2012, 566, 13-17.	0.9	4
57	Temperature dependence of frequency response characteristics in organic field-effect transistors. Applied Physics Letters, 2012, 100, 183308.	3.3	10
58	Highly enhanced charge injection in thienoacene-based organic field-effect transistors with chemically doped contact. Applied Physics Letters, 2012, 100, .	3.3	130
59	Reduction of charge injection barrier by 1-nm contact oxide interlayer in organic field effect transistors. Applied Physics Letters, 2012, 100, .	3.3	37
60	Direct formation of organic semiconducting single crystals by solvent vapor annealing on a polymer base film. Journal of Materials Chemistry, 2012, 22, 8462.	6.7	55
61	Tunable contact resistance in double-gate organic field-effect transistors. Organic Electronics, 2012, 13, 1583-1588.	2.6	18
62	Controlling the crystal formation in solution-process for organic field-effect transistors with high-performance. Organic Electronics, 2012, 13, 2975-2984.	2.6	17
63	High-performance organic field-effect transistors based on dihexyl-substituted dibenzo[d,d′]thieno[3,2-b;4,5-b′]dithiophene. Journal of Materials Chemistry, 2012, 22, 7715.	6.7	37
64	Optimal Structure for Highâ€Performance and Lowâ€Contactâ€Resistance Organic Fieldâ€Effect Transistors Using Contactâ€Doped Coplanar and Pseudoâ€Staggered Device Architectures. Advanced Functional Materials, 2012, 22, 4577-4583.	14.9	57
65	Large plate-like organic crystals from direct spin-coating for solution-processed field-effect transistor arrays with high uniformity. Organic Electronics, 2012, 13, 264-272.	2.6	69
66	Solution-processed organic crystals for field-effect transistor arrays with smooth semiconductor/dielectric interface on paper substrates. Organic Electronics, 2012, 13, 815-819.	2.6	65
67	Forming semiconductor/dielectric double layers by one-step spin-coating for enhancing the performance of organic field-effect transistors. Organic Electronics, 2012, 13, 1146-1151.	2.6	39
68	Controlled Selfâ€Assembly of Organic Semiconductors for Solutionâ€Based Fabrication of Organic Fieldâ€Effect Transistors. Advanced Materials, 2012, 24, 299-306.	21.0	104
69	Bottom-Contact Pentacene Thin-Film Transistors on Silicon Nitride. IEEE Electron Device Letters, 2011, 32, 1305-1307.	3.9	8
70	Carrier mobility in organic field-effect transistors. Journal of Applied Physics, 2011, 110, 104513.	2.5	43
71	Power transfer-length method for full biasing contact resistance evaluation of organic field-effect transistors. Organic Electronics, 2011, 12, 2019-2024.	2.6	16
72	Origin of low-frequency noise in pentacene field-effect transistors. Solid-State Electronics, 2011, 61, 106-110.	1.4	45

#	Article	IF	CITATIONS
73	Solutionâ€Processable Organic Single Crystals with Bandlike Transport in Fieldâ€Effect Transistors. Advanced Materials, 2011, 23, 523-526.	21.0	348
74	All-Solution-Processed Selective Assembly of Flexible Organic Field-Effect Transistor Arrays. Applied Physics Express, 2010, 3, 051601.	2.4	37
75	Direct evaluation of low-field mobility and access resistance in pentacene field-effect transistors. Journal of Applied Physics, 2010, 107, .	2.5	181
76	Improvement of subthreshold current transport by contact interface modification in p-type organic field-effect transistors. Applied Physics Letters, 2009, 94, .	3.3	164
77	Surface selective deposition of molecular semiconductors for solution-based integration of organic field-effect transistors. Applied Physics Letters, 2009, 94, .	3.3	96
78	Simple and Scalable Gel-Based Separation of Metallic and Semiconducting Carbon Nanotubes. Nano Letters, 2009, 9, 1497-1500.	9.1	307
79	Ambipolar-transporting coaxial nanotubes with a tailored molecular graphene–fullerene heterojunction. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21051-21056.	7.1	161
80	Charge Transport Properties of Hexabenzocoronene Nanotubes by Field Effect: Influence of the Oligoether Side Chains on the Mobility. Chemistry Letters, 2009, 38, 888-889.	1.3	17
81	Selective organization of solution-processed organic field-effect transistors. Applied Physics Letters, 2008, 92, .	3.3	74
82	Charge injection process in organic field-effect transistors. Applied Physics Letters, 2007, 91, .	3.3	140
83	Molecular-packing-enhanced charge transport in organic field-effect transistors based on semiconducting porphyrin crystals. Applied Physics Letters, 2007, 91, 123501.	3.3	43
84	Synthesis of fluorinated anti-fluorenacenedione and the structural, electronic, and field-effect properties. Organic and Biomolecular Chemistry, 2007, 5, 2592.	2.8	30
85	Thin-Film Phase of Pentacene Film Formed on KCl by Vacuum Deposition. Japanese Journal of Applied Physics, 2006, 45, 401-404.	1.5	19
86	Fabrication and characterization of single-grain organic field-effect transistor of pentacene. Journal of Applied Physics, 2004, 96, 769-772.	2.5	68
87	Microflow Manipulation by Velocity Field Gradient: Spontaneous Patterning of Silver Nanowires for Tailored Flexible Transparent Conductors. Advanced Materials Technologies, 0, , 2 <u>101687.</u>	5.8	2