Bruce A C Cree,, Mas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1287737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 2011, 476, 214-219.	27.8	2,400
2	Risk Alleles for Multiple Sclerosis Identified by a Genomewide Study. New England Journal of Medicine, 2007, 357, 851-862.	27.0	1,529
3	Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics, 2013, 45, 1353-1360.	21.4	1,213
4	Neuromyelitis optica, psychiatric symptoms and primary polydipsia: a case report. General Hospital Psychiatry, 2010, 32, 648.e5-648.e8.	2.4	953
5	Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science, 2019, 365, .	12.6	710
6	Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10713-10718.	7.1	709
7	Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet, The, 2018, 391, 1263-1273.	13.7	684
8	An open label study of the effects of rituximab in neuromyelitis optica. Neurology, 2005, 64, 1270-1272.	1.1	607
9	Treatment of Neuromyelitis Optica With Rituximab. Archives of Neurology, 2008, 65, 1443.	4.5	445
10	Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet, The, 2019, 394, 1352-1363.	13.7	433
11	Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Human Molecular Genetics, 2009, 18, 767-778.	2.9	419
12	Practice guideline recommendations summary: Disease-modifying therapies for adults with multiple sclerosis. Neurology, 2018, 90, 777-788.	1.1	406
13	Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet, The, 2016, 387, 1075-1084.	13.7	379
14	Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet, The, 2017, 390, 2481-2489.	13.7	377
15	Treatment of Multiple Sclerosis: A Review. American Journal of Medicine, 2020, 133, 1380-1390.e2.	1.5	374
16	Longâ€ŧerm evolution of multiple sclerosis disability in the treatment era. Annals of Neurology, 2016, 80, 499-510.	5.3	331
17	Mapping Multiple Sclerosis Susceptibility to the HLA-DR Locus in African Americans. American Journal of Human Genetics, 2004, 74, 160-167.	6.2	311
18	Aquaporin 4â€specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize <i>Clostridium</i> ABC transporter. Annals of Neurology, 2012, 72, 53-64.	5.3	281

#	Article	IF	CITATIONS
19	Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Human Molecular Genetics, 2006, 15, 2813-2824.	2.9	279
20	Clinical characteristics of African Americans vs Caucasian Americans with multiple sclerosis. Neurology, 2004, 63, 2039-2045.	1.1	275
21	Silent progression in disease activity–free relapsing multiple sclerosis. Annals of Neurology, 2019, 85, 653-666.	5.3	265
22	A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nature Genetics, 2005, 37, 1113-1118.	21.4	243
23	Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4777-4782.	7.1	238
24	Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18680-18685.	7.1	231
25	Inclusion of brain volume loss in a revised measure of â€~no evidence of disease activity' (NEDA-4) in relapsing–remitting multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1297-1305.	3.0	228
26	Asymptomatic spinal cord lesions predict disease progression in radiologically isolated syndrome. Neurology, 2011, 76, 686-692.	1.1	225
27	B cell exchange across the blood-brain barrier in multiple sclerosis. Journal of Clinical Investigation, 2012, 122, 4533-4543.	8.2	211
28	Effect of oral cladribine on time to conversion to clinically definite multiple sclerosis in patients with a first demyelinating event (ORACLE MS): a phase 3 randomised trial. Lancet Neurology, The, 2014, 13, 257-267.	10.2	194
29	Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): a multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurology, The, 2019, 18, 1009-1020.	10.2	191
30	Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicentre, randomised, 24-month, phase 3 trial. Lancet Neurology, The, 2019, 18, 1021-1033.	10.2	184
31	Reduction of CD8 ⁺ T lymphocytes in multiple sclerosis patients treated with dimethyl fumarate. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e76.	6.0	171
32	MS disease activity in RESTORE. Neurology, 2014, 82, 1491-1498.	1.1	166
33	Rituximab before and during pregnancy. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e453.	6.0	159
34	Spinal cord gray matter atrophy correlates with multiple sclerosis disability. Annals of Neurology, 2014, 76, 568-580.	5.3	158
35	Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review. PLoS ONE, 2016, 11, e0154335.	2.5	156
36	Genotype–Phenotype correlations in multiple sclerosis: HLA genes influence disease severity inferred by 1HMR spectroscopy and MRI measures. Brain, 2009, 132, 250-259.	7.6	154

#	Article	IF	CITATIONS
37	Ocrelizumab and Other CD20+ B-Cell-Depleting Therapies in Multiple Sclerosis. Neurotherapeutics, 2017, 14, 835-841.	4.4	141
38	Disease Activity Free Status. JAMA Neurology, 2014, 71, 269.	9.0	132
39	Gut microbiota–specific IgA ⁺ B cells traffic to the CNS in active multiple sclerosis. Science Immunology, 2020, 5, .	11.9	132
40	Association Between Serum Neurofilament Light Chain Levels and Long-term Disease Course Among Patients With Multiple Sclerosis Followed up for 12 Years. JAMA Neurology, 2019, 76, 1359.	9.0	129
41	Neuromyelitis Optica. Seminars in Neurology, 2002, 22, 105-122.	1.4	128
42	Gut microbiome analysis in neuromyelitis optica reveals overabundance of <i>Clostridium perfringens</i> . Annals of Neurology, 2016, 80, 443-447.	5.3	125
43	Progressive multifocal leukoencephalopathy after fingolimod treatment. Neurology, 2018, 90, e1815-e1821.	1.1	123
44	Combining beta interferon and atorvastatin may increase disease activity in multiple sclerosis. Neurology, 2008, 71, 1390-1395.	1.1	119
45	A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis. Proceedings of the United States of America, 2020, 117, 22932-22943.	7.1	119
46	Continuous daily assessment of multiple sclerosis disability using remote step count monitoring. Journal of Neurology, 2017, 264, 316-326.	3.6	109
47	Comprehensive follow-up of the first genome-wide association study of multiple sclerosis identifies KIF21B and TMEM39A as susceptibility loci. Human Molecular Genetics, 2010, 19, 953-962.	2.9	108
48	Natalizumab dosage suspension: Are we helping or hurting?. Annals of Neurology, 2010, 68, 395-399.	5.3	108
49	Microcystic Inner Nuclear Layer Abnormalities and Neuromyelitis Optica. JAMA Neurology, 2013, 70, 629.	9.0	107
50	Comprehensive systematic review summary: Disease-modifying therapies for adults with multiple sclerosis. Neurology, 2018, 90, 789-800.	1.1	107
51	Characterizing the Mechanisms of Progression in Multiple Sclerosis. Archives of Neurology, 2005, 62, 1345.	4.5	105
52	Uncoupling the Roles of <i>HLA-DRB1</i> and <i>HLA-DRB5</i> Genes in Multiple Sclerosis. Journal of Immunology, 2008, 181, 5473-5480.	0.8	105
53	Distinctive retinal nerve fibre layer and vascular changes in neuromyelitis optica following optic neuritis. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 1002-1005.	1.9	103
54	Secondary Progressive Multiple Sclerosis. Neurology, 2021, 97, 378-388.	1.1	100

#	Article	IF	CITATIONS
55	Modification of Multiple Sclerosis Phenotypes by African Ancestry at HLA. Archives of Neurology, 2009, 66, 226-33.	4.5	92
56	Acute Transverse Myelitis: Demyelinating, Inflammatory, and Infectious Myelopathies. Seminars in Neurology, 2012, 32, 097-113.	1.4	91
57	Pilot trial of lowâ€dose naltrexone and quality of life in multiple sclerosis. Annals of Neurology, 2010, 68, 145-150.	5.3	90
58	In vivo evidence of glutamate toxicity in multiple sclerosis. Annals of Neurology, 2014, 76, 269-278.	5.3	88
59	Clonal relationships of CSF B cells in treatment-naive multiple sclerosis patients. JCI Insight, 2017, 2, .	5.0	84
60	Clemastine rescues myelination defects and promotes functional recovery in hypoxic brain injury. Brain, 2018, 141, 85-98.	7.6	83
61	Quantification and Functional Characterization of Antibodies to Native Aquaporin 4 in Neuromyelitis Optica. Archives of Neurology, 2010, 67, 1201-8.	4.5	82
62	Blood RNA profiling in a large cohort of multiple sclerosis patients and healthy controls. Human Molecular Genetics, 2013, 22, 4194-4205.	2.9	81
63	Association Between Thoracic Spinal Cord Gray Matter Atrophy and Disability in Multiple Sclerosis. JAMA Neurology, 2015, 72, 897.	9.0	78
64	Transient increases in anti-aquaporin-4 antibody titers following rituximab treatment in neuromyelitis optica, in association with elevated serum BAFF levels. Journal of Clinical Neuroscience, 2011, 18, 997-998.	1.5	77
65	Response to Interferon Beta-1a Treatment in African American Multiple Sclerosis Patients. Archives of Neurology, 2005, 62, 1681.	4.5	76
66	Multiple sclerosis risk loci and disease severity in 7,125 individuals from 10 studies. Neurology: Genetics, 2016, 2, e87.	1.9	76
67	Disease-modifying therapies alter gut microbial composition in MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e517.	6.0	75
68	Current therapeutic landscape in multiple sclerosis: an evolving treatment paradigm. Current Opinion in Neurology, 2019, 32, 365-377.	3.6	73
69	Serum Clial Fibrillary Acidic Protein: A Neuromyelitis Optica Spectrum Disorder Biomarker. Annals of Neurology, 2021, 89, 895-910.	5.3	72
70	Antibody responses against galactocerebroside are potential stage-specific biomarkers in multiple sclerosis. Journal of Allergy and Clinical Immunology, 2005, 116, 453-459.	2.9	70
71	IL12A, MPHOSPH9/CDK2AP1 and RGS1 are novel multiple sclerosis susceptibility loci. Genes and Immunity, 2010, 11, 397-405.	4.1	70
72	Association of Continuous Assessment of Step Count by Remote Monitoring With Disability Progression Among Adults With Multiple Sclerosis. JAMA Network Open, 2019, 2, e190570.	5.9	69

#	Article	IF	CITATIONS
73	Vitamin D in African Americans with multiple sclerosis. Neurology, 2011, 76, 1824-1830.	1.1	67
74	Reversibility of the effects of natalizumab on peripheral immune cell dynamics in MS patients. Neurology, 2017, 89, 1584-1593.	1.1	65
75	A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis. Nature Communications, 2019, 10, 2236.	12.8	65
76	Quality of life in multiple sclerosis is associated with lesion burden and brain volume measures. Neurology, 2009, 72, 1760-1765.	1.1	64
77	Update on reproductive safety of current and emerging disease-modifying therapies for multiple sclerosis Journal, 2013, 19, 835-843.	3.0	64
78	Association of HLA Genetic Risk Burden With Disease Phenotypes in Multiple Sclerosis. JAMA Neurology, 2016, 73, 795.	9.0	64
79	Safety and efficacy of MD1003 (high-dose biotin) in patients with progressive multiple sclerosis (SPI2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurology, The, 2020, 19, 988-997.	10.2	64
80	Siponimod and Cognition in Secondary Progressive Multiple Sclerosis. Neurology, 2021, 96, e376-e386.	1.1	64
81	Placebo-controlled study in neuromyelitis optica—Ethical and design considerations. Multiple Sclerosis Journal, 2016, 22, 862-872.	3.0	63
82	Massive CNS monocytic infiltration at autopsy in an alemtuzumab-treated patient with NMO. Neurology: Neuroimmunology and NeuroInflammation, 2014, 1, e34.	6.0	61
83	Ocrelizumab efficacy in subgroups of patients with relapsing multiple sclerosis. Journal of Neurology, 2019, 266, 1182-1193.	3.6	61
84	Linkage and association with the <i>NOS2A</i> locus on chromosome 17q11 in multiple sclerosis. Annals of Neurology, 2004, 55, 793-800.	5.3	60
85	A Major Histocompatibility Class I Locus Contributes to Multiple Sclerosis Susceptibility Independently from HLA-DRB1*15:01. PLoS ONE, 2010, 5, e11296.	2.5	60
86	An ImmunoChip study of multiple sclerosis risk in African Americans. Brain, 2015, 138, 1518-1530.	7.6	60
87	Rituximab in neurological disease: principles, evidence and practice. Practical Neurology, 2019, 19, 5-20.	1.1	59
88	Magnetic Resonance Spectroscopy Markers of Disease Progression in Multiple Sclerosis. JAMA Neurology, 2014, 71, 840.	9.0	57
89	Natalizumab plus interferon beta-1a reduces lesion formation in relapsing multiple sclerosis. Journal of the Neurological Sciences, 2010, 292, 28-35.	0.6	56
90	Multiple Sclerosis-Associated Changes in the Composition and Immune Functions of Spore-Forming Bacteria. MSystems, 2018, 3, .	3.8	56

#	Article	IF	CITATIONS
91	Neuromyelitis optica: Diagnosis, pathogenesis, and treatment. Current Neurology and Neuroscience Reports, 2008, 8, 427-433.	4.2	54
92	Genetic risk variants in African Americans with multiple sclerosis. Neurology, 2013, 81, 219-227.	1.1	54
93	The Gut Microbiome in Neuromyelitis Optica. Neurotherapeutics, 2018, 15, 92-101.	4.4	54
94	Precision medicine in chronic disease management: The multiple sclerosis <scp>B</scp> io <scp>S</scp> creen. Annals of Neurology, 2014, 76, 633-642.	5.3	53
95	Multifactor dimensionality reduction reveals gene–gene interactions associated with multiple sclerosis susceptibility in African Americans. Genes and Immunity, 2006, 7, 310-315.	4.1	52
96	Switching Multiple Sclerosis Patients with Breakthrough Disease to Second-Line Therapy. PLoS ONE, 2011, 6, e16664.	2.5	51
97	Toward a low-cost, in-home, telemedicine-enabled assessment of disability in multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 1526-1534.	3.0	49
98	Neuromyelitis optica following human papillomavirus vaccination. Neurology, 2012, 79, 285-287.	1.1	47
99	Emerging Monoclonal Antibody Therapies for Multiple Sclerosis. Neurologist, 2006, 12, 171-178.	0.7	44
100	Multiple sclerosis genetics. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 122, 193-209.	1.8	44
101	Identification of new serum autoantibodies in neuromyelitis optica using protein microarrays. Neurology, 2006, 67, 176-177.	1.1	41
102	Ovarian aging is associated with gray matter volume and disability in women with MS. Neurology, 2018, 90, e254-e260.	1.1	41
103	Telomere Length Is Associated with Disability Progression in Multiple Sclerosis. Annals of Neurology, 2019, 86, 671-682.	5.3	41
104	Efficacy and safety of temelimab in multiple sclerosis: Results of a randomized phase 2b and extension study. Multiple Sclerosis Journal, 2022, 28, 429-440.	3.0	40
105	Challenges and opportunities in designing clinical trials for neuromyelitis optica. Neurology, 2015, 84, 1805-1815.	1.1	39
106	Spinal Cord Atrophy Predicts Progressive Disease in Relapsing Multiple Sclerosis. Annals of Neurology, 2022, 91, 268-281.	5.3	39
107	Efficacy of Natalizumab Therapy in Patients of African Descent With Relapsing Multiple Sclerosis. Archives of Neurology, 2011, 68, 464.	4.5	38
108	Genome sequencing uncovers phenocopies in primary progressive multiple sclerosis. Annals of Neurology, 2018, 84, 51-63.	5.3	38

#	Article	IF	CITATIONS
109	Efficacy and safety of ozanimod in multiple sclerosis: Dose-blinded extension of a randomized phase II study. Multiple Sclerosis Journal, 2019, 25, 1255-1262.	3.0	37
110	Therapeutic Considerations for Disease Progression in Multiple Sclerosis. Archives of Neurology, 2005, 62, 1519-30.	4.5	36
111	Refining the association of MHC with multiple sclerosis in African Americans. Human Molecular Genetics, 2010, 19, 3080-3088.	2.9	35
112	Treatment of spontaneous EAE by laquinimod reduces Tfh, B cell aggregates, and disease progression. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e272.	6.0	31
113	Impact of a switch to fingolimod versus staying on glatiramer acetate or beta interferons on patient- and physician-reported outcomes in relapsing multiple sclerosis: post hocanalyses of the EPOC trial. BMC Neurology, 2014, 14, 220.	1.8	30
114	A randomized, placebo-controlled, phase 2 trial of laquinimod in primary progressive multiple sclerosis. Neurology, 2020, 95, e1027-e1040.	1.1	28
115	Transient hyperckemia in the setting of neuromyelitis optica (NMO). Muscle and Nerve, 2014, 50, 859-862.	2.2	27
116	Encephalitis of Unclear Origin Diagnosed by Brain Biopsy. JAMA Neurology, 2015, 72, 66.	9.0	26
117	MOG transmembrane and cytoplasmic domains contain highly stimulatory T-cell epitopes in MS. Neurology: Neuroimmunology and NeuroInflammation, 2014, 1, e20.	6.0	24
118	Household paired design reduces variance and increases power in multi-city gut microbiome study in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 366-379.	3.0	24
119	Acute inflammatory myelopathies. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 122, 613-667.	1.8	23
120	Onset of secondary progressive <scp>MS</scp> after longâ€ŧerm rituximab therapy – a case report. Annals of Clinical and Translational Neurology, 2017, 4, 46-52.	3.7	22
121	Phase IV study of retention on fingolimod <i>versus</i> injectable multiple sclerosis therapies: a randomized clinical trial. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628641877433.	3.5	22
122	Effect of the sphingosine-1-phosphate receptor modulator ozanimod on leukocyte subtypes in relapsing MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	22
123	Longitudinally persistent cerebrospinal fluid B-cells can resist treatment in multiple sclerosis. JCI Insight, 2019, 4, .	5.0	22
124	Acute transverse myelitis: Is the "idiopathic" form vanishing?. Neurology, 2005, 65, 1857-1858.	1.1	21
125	Harnessing electronic medical records to advance research on multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 408-418.	3.0	21
126	Radiologic MS disease activity during natalizumab treatment interruption: findings from RESTORE. Journal of Neurology, 2015, 262, 326-336.	3.6	20

#	Article	IF	CITATIONS
127	Prognostic biomarkers of IFNb therapy in multiple sclerosis patients. Multiple Sclerosis Journal, 2015, 21, 894-904.	3.0	20
128	Effect of Ozanimod on Symbol Digit Modalities Test Performance in Relapsing MS. Multiple Sclerosis and Related Disorders, 2021, 48, 102673.	2.0	20
129	Disability Outcomes in the N-MOmentum Trial of Inebilizumab in Neuromyelitis Optica Spectrum Disorder. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	20
130	SUMMIT (Serially Unified Multicenter Multiple Sclerosis Investigation): creating a repository of deeply phenotyped contemporary multiple sclerosis cohorts. Multiple Sclerosis Journal, 2018, 24, 1485-1498.	3.0	19
131	Ozanimod in relapsing multiple sclerosis: Pooled safety results from the clinical development program. Multiple Sclerosis and Related Disorders, 2021, 51, 102844.	2.0	19
132	Inebilizumab for treatment of neuromyelitis optica spectrum disorder in patients with prior rituximab use from the N-MOmentum Study. Multiple Sclerosis and Related Disorders, 2022, 57, 103352.	2.0	19
133	Long-term efficacy and safety of siponimod in patients with secondary progressive multiple sclerosis: Analysis of EXPAND core and extension data up to >5 years. Multiple Sclerosis Journal, 2022, 28, 1591-1605.	3.0	19
134	pRNFL as a marker of disability worsening in the medium/long term in patients with MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e533.	6.0	18
135	COVID-19 Outcomes and Vaccination in People with Relapsing Multiple Sclerosis Treated with Ofatumumab. Neurology and Therapy, 2022, 11, 741-758.	3.2	18
136	The Two Sides of Siponimod: Evidence for Brain and Immune Mechanisms in Multiple Sclerosis. CNS Drugs, 2022, 36, 703-719.	5.9	18
137	Genetics of primary progressive multiple sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 122, 211-230.	1.8	17
138	Fulminant Demyelinating Diseases of the Central Nervous System. Seminars in Neurology, 2015, 35, 656-666.	1.4	17
139	Cerebral Gray Matter Atrophy Is Associated with the CSF IgG index in African American with Multiple Sclerosis. Journal of Neuroimaging, 2017, 27, 476-480.	2.0	17
140	Brain atrophy and disability worsening in primary progressive multiple sclerosis: insights from the <scp>INFORMS</scp> study. Annals of Clinical and Translational Neurology, 2018, 5, 346-356.	3.7	17
141	Cell type-specific transcriptomics identifies neddylation as a novel therapeutic target in multiple sclerosis. Brain, 2021, 144, 450-461.	7.6	16
142	AQP4-IgG-seronegative patient outcomes in the N-MOmentum trial of inebilizumab in neuromyelitis optica spectrum disorder. Multiple Sclerosis and Related Disorders, 2022, 57, 103356.	2.0	16
143	Multiple sclerosis: two decades of progress. Lancet Neurology, The, 2022, 21, 211-214.	10.2	16
144	Effect of siponimod on magnetic resonance imaging measures of neurodegeneration and myelination in secondary progressive multiple sclerosis: Gray matter atrophy and magnetization transfer ratio analyses from the EXPAND phase 3 trial. Multiple Sclerosis Journal, 2022, 28, 1526-1540.	3.0	16

#	Article	IF	CITATIONS
145	Long-term safety and efficacy of ozanimod in relapsing multiple sclerosis: Up to 5 years of follow-up in the DAYBREAK open-label extension trial. Multiple Sclerosis Journal, 2022, 28, 1944-1962.	3.0	16
146	Polygenic risk score association with multiple sclerosis susceptibility and phenotype in Europeans. Brain, 2023, 146, 645-656.	7.6	15
147	Neurite Orientation Dispersion and Density Imaging for Assessing Acute Inflammation and Lesion Evolution in MS. American Journal of Neuroradiology, 2020, 41, 2219-2226.	2.4	14
148	Retinal <scp>INL</scp> Thickness in Multiple Sclerosis: A Mere Marker of Neurodegeneration?. Annals of Neurology, 2021, 89, 192-193.	5.3	14
149	Detection of Neoplasms by Metagenomic Next-Generation Sequencing of Cerebrospinal Fluid. JAMA Neurology, 2021, 78, 1355.	9.0	14
150	Specific hypomethylation programs underpin B cell activation in early multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
151	Interferon Beta Use and Disability Prevention in Relapsing-Remitting Multiple Sclerosis. JAMA Neurology, 2013, 70, 248.	9.0	13
152	Siponimod (BAF312) for the treatment of secondary progressive multiple sclerosis: Design of the phase 3 EXPAND trial. Multiple Sclerosis and Related Disorders, 2014, 3, 752.	2.0	13
153	Efficacy and safety of ocrelizumab vs interferon beta-1a in participants of African descent with relapsing multiple sclerosis in the Phase III OPERA I and OPERA II studies. Multiple Sclerosis and Related Disorders, 2021, 52, 103010.	2.0	13
154	Characterizing retinal structure injury in African-Americans with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2016, 7, 16-20.	2.0	12
155	Plasma neurofilament light chain concentrations as a biomarker of clinical and radiologic outcomes in relapsing multiple sclerosis: Post hoc analysis of Phase 3 ozanimod trials. European Journal of Neurology, 2021, 28, 3722-3730.	3.3	12
156	Steering through complexity. Current Opinion in Neurology, 2016, 29, 263-271.	3.6	11
157	Efficacy and Safety of 2 Fingolimod Doses vs Glatiramer Acetate for the Treatment of Patients With Relapsing-Remitting Multiple Sclerosis. JAMA Neurology, 2021, 78, 48.	9.0	11
158	Sensitivity analysis of the primary endpoint from the N-MOmentum study of inebilizumab in NMOSD. Multiple Sclerosis Journal, 2021, 27, 2052-2061.	3.0	11
159	Cryptococcal Meningitis Reported With Fingolimod Treatment. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	11
160	Does race matter for multiple sclerosis?. Neurology, 2010, 74, 532-533.	1.1	10
161	Placebo controlled trials in neuromyelitis optica are needed and ethical. Multiple Sclerosis and Related Disorders, 2015, 4, 536-545.	2.0	10
162	Treatment retention on fingolimod compared with injectable multiple sclerosis therapies in African-American patients: A subgroup analysis of a randomized phase 4 study. Multiple Sclerosis and Related Disorders, 2018, 25, 50-56.	2.0	9

#	Article	IF	CITATIONS
163	An electronic, unsupervised patient-reported Expanded Disability Status Scale for multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 1432-1441.	3.0	9
164	Effects of COVID-19 "Sheltering in Place―on Activity in People With Multiple Sclerosis. Neurology: Clinical Practice, 2021, 11, e216-e218.	1.6	8
165	Lymphocyte counts and infection rates. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6,	6.0	7
166	Disability improvement as a clinically relevant outcome in clinical trials of relapsing forms of multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 2219-2231.	3.0	7
167	Siponimod vs placebo in active secondary progressive multiple sclerosis: a post hoc analysis from the phase 3 EXPAND study. Journal of Neurology, 2022, 269, 5093-5104.	3.6	7
168	DIAGNOSIS AND DIFFERENTIAL DIAGNOSIS OF MULTIPLE SCLEROSIS. CONTINUUM Lifelong Learning in Neurology, 2010, 16, 19-36.	0.8	5
169	Rituximab is an acceptable alternative to ocrelizumab for treating multiple sclerosis – Commentary. Multiple Sclerosis Journal, 2018, 24, 1161-1162.	3.0	5
170	Imaging correlates of visual function in multiple sclerosis. PLoS ONE, 2020, 15, e0235615.	2.5	5
171	Subgroup analysis of clinical and MRI outcomes in participants with a first clinical demyelinating event at risk of multiple sclerosis in the ORACLE-MS study. Multiple Sclerosis and Related Disorders, 2021, 49, 102695.	2.0	5
172	Identifying falls remotely in people with multiple sclerosis. Journal of Neurology, 2022, 269, 1889-1898.	3.6	5
173	A hormonal therapy for menopausal women with MS: A phase Ib/IIa randomized controlled trial. Multiple Sclerosis and Related Disorders, 2022, 61, 103747.	2.0	5
174	Mycophenolate Mofetil to Treat Neuromyelitis Optica. JAMA Neurology, 2014, 71, 1354.	9.0	4
175	Simultaneous serum aquaporin-4 antibody and CSF NMDA receptor antibody–positive encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e101.	6.0	4
176	Acute liver injury in a Glatopa-treated patient with MS. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e368.	6.0	4
177	Making Every Step Count: Minute-by-Minute Characterization of Step Counts Augments Remote Activity Monitoring in People With Multiple Sclerosis. Frontiers in Neurology, 0, 13, .	2.4	4
178	Letter to the Editor Regarding "Network Meta-analysis of Food and Drug Administration-approved Treatment Options for Adults with Aquaporin-4 ImmunoglobulinÂG-positive Neuromyelitis Optica Spectrum Disorder― Neurology and Therapy, 2022, 11, 1439-1443.	3.2	4
179	2014 Multiple Sclerosis Therapeutic Update. Neurohospitalist, The, 2014, 4, 63-65.	0.8	3
180	Statistical Considerations for an Adaptive Design for a Serious Rare Disease. Therapeutic Innovation and Regulatory Science, 2016, 50, 375-384.	1.6	3

#	Article	IF	CITATIONS
181	The FLUENT study design: investigating immune cell subset and neurofilament changes in patients with relapsing multiple sclerosis treated with fingolimod. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2019, 5, 205521731881924.	1.0	3
182	Challenges to Longitudinal Characterization of Lower Urinary Tract Dysfunction in Multiple Sclerosis and Related Disorders, 2022, 62, 103793.	2.0	3
183	Patient preferences for attributes of disease modifying Therapies: Results of a choice based conjoint analysis. Value in Health, 2013, 16, A107.	0.3	2
184	Reply to "Silent Progression or Bout Onset Progressive Multiple Sclerosis?― Annals of Neurology, 2019, 86, 472-473.	5.3	2
185	Is TOPIC the last trial for clinically isolated syndrome?. Nature Reviews Neurology, 2015, 11, 6-7.	10.1	1
186	Switching to fingolimod in PREFERMS: Effect of treatment history and naÃ ⁻ vety on clinical, MRI and treatment satisfaction outcomes✰. Multiple Sclerosis and Related Disorders, 2020, 45, 102346.	2.0	1
187	Interferon Beta-1a Treatment and African Americans—Reply. Archives of Neurology, 2006, 63, 628.	4.5	0
188	F.36. Introduction of a Cell-based Assay Against Native Aquaporin-4-High Specificity and Sensitivity for Neuromyelitis Optica. Clinical Immunology, 2008, 127, S54-S55.	3.2	0
189	Is there a role for planned natalizumab dosage suspension in mitigating progressive multifocal leukoencephalopathy risk?. Neurodegenerative Disease Management, 2011, 1, 11-14.	2.2	0
190	Diagnosing Encephalitis, Not Otherwise Specified—Reply. JAMA Neurology, 2015, 72, 726.	9.0	0
191	Longer-term Safety with Siponimod Treatment in Multiple Sclerosis: Pooled Analysis of Data from the Bold and Expand Trials and their Extensions. Multiple Sclerosis and Related Disorders, 2018, 26, 255-256.	2.0	0
192	Multiple Sclerosis Therapy: Are We Ready for a One-Size-Fits-All Approach?. Journal of Neuro-Ophthalmology, 2018, 38, 258-262.	0.8	0
193	Author response: Progressive multifocal leukoencephalopathy after fingolimod treatment. Neurology, 2019, 92, 151.2-151.	1.1	0
194	Multiple Sclerosis Genetics. , 2018, , .		0
195	Reply to "Spinal Cord Atrophy Is a Preclinical Marker of Progressive <scp>MS</scp> ― Annals of Neurology, 2022, 91, 735-736.	5.3	0
196	Imaging correlates of visual function in multiple sclerosis. , 2020, 15, e0235615.		0
197	Imaging correlates of visual function in multiple sclerosis. , 2020, 15, e0235615.		0
198	Imaging correlates of visual function in multiple sclerosis. , 2020, 15, e0235615.		0

#	Article	IF	CITATIONS
199	Imaging correlates of visual function in multiple sclerosis. , 2020, 15, e0235615.		0