Yingmei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1286251/publications.pdf

Version: 2024-02-01

89 papers

9,920 citations

71102 41 h-index 89 g-index

98 all docs 98 docs citations

times ranked

98

18237 citing authors

#	Article	IF	CITATIONS
1	Targeting DNA damage response in cardiovascular diseases: from pathophysiology to therapeutic implications. Cardiovascular Research, 2023, 119, 691-709.	3.8	16
2	NDP52 Protects Against Myocardial Infarction-Provoked Cardiac Anomalies Through Promoting Autophagosome–Lysosome Fusion ⟨i>via⟨ i> Recruiting TBK1 and RAB7. Antioxidants and Redox Signaling, 2022, 36, 1119-1135.	5.4	8
3	Integrated coronary disease burden and patterns to discriminate vessels benefiting from percutaneous coronary intervention. Catheterization and Cardiovascular Interventions, 2022, 99, .	1.7	9
4	Heart failure with preserved ejection fraction (HFpEF) in type 2 diabetes mellitus: from pathophysiology to therapeutics. Journal of Molecular Cell Biology, 2022, 14, .	3.3	16
5	Prognostic Implications of Prestent Pullback Pressure Gradient and Poststent Quantitative Flow Ratio in Patients Undergoing Percutaneous Coronary Intervention. Journal of the American Heart Association, 2022, 11 , .	3.7	6
6	TBC1D15-Drp1 interaction-mediated mitochondrial homeostasis confers cardioprotection against myocardial ischemia/reperfusion injury. Metabolism: Clinical and Experimental, 2022, 134, 155239.	3.4	23
7	Parkin overexpression alleviates cardiac aging through facilitating K63-polyubiquitination of TBK1 to facilitate mitophagy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 165997.	3.8	22
8	Deletion of the E3 ubiquitin ligase, Parkin, exacerbates chronic alcohol intakeâ€induced cardiomyopathy through an Ambra1â€dependent mechanism. British Journal of Pharmacology, 2021, 178, 964-982.	5.4	17
9	Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nature Reviews Cardiology, 2021, 18, 499-521.	13.7	283
10	Dysregulation of iron metabolism in cardiovascular diseases: From iron deficiency to iron overload. Biochemical Pharmacology, 2021, 190, 114661.	4.4	30
11	Editorial: New Drug Targets for Proteotoxicity in Cardiometabolic Diseases. Frontiers in Physiology, 2021, 12, 745296.	2.8	1
12	Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiological Reviews, 2021, 101, 1745-1807.	28.8	150
13	Epigenetic modification in alcohol use disorder and alcoholic cardiomyopathy: From pathophysiology to therapeutic opportunities. Metabolism: Clinical and Experimental, 2021, 125, 154909.	3.4	9
14	Bax inhibitor 1 preserves mitochondrial homeostasis in acute kidney injury through promoting mitochondrial retention of PHB2. Theranostics, 2020, 10, 384-397.	10.0	112
15	Overexpression of the histidine triad nucleotideâ€binding protein 2 protects cardiac function in the adult mice after acute myocardial infarction. Acta Physiologica, 2020, 228, e13439.	3.8	8
16	DNA-PKcs promotes cardiac ischemia reperfusion injury through mitigating BI-1-governed mitochondrial homeostasis. Basic Research in Cardiology, 2020, 115, 11.	5.9	106
17	<scp>CD74</scp> knockout protects against LPSâ€induced myocardial contractile dysfunction through <scp>AMPKâ€6kp2â€6UV39H1</scp> â€mediated demethylation of <scp>BCLB</scp> . British Journal of Pharmacology, 2020, 177, 1881-1897.	5 . 4	27
18	Interrelationship between Alzheimer's disease and cardiac dysfunction: the brain–heart continuum?. Acta Biochimica Et Biophysica Sinica, 2020, 52, 1-8.	2.0	38

#	Article	IF	CITATIONS
19	TBC1D15/RAB7-regulated mitochondria-lysosome interaction confers cardioprotection against acute myocardial infarction-induced cardiac injury. Theranostics, 2020, 10, 11244-11263.	10.0	55
20	Mitophagy Receptors and Mediators: Therapeutic Targets in the Management of Cardiovascular Ageing. Ageing Research Reviews, 2020, 62, 101129.	10.9	65
21	Berberine Promotes Cardiac Function by Upregulating PINK1/Parkin-Mediated Mitophagy in Heart Failure. Frontiers in Physiology, 2020, 11, 565751.	2.8	49
22	FUNDC1 interacts with FBXL2 to govern mitochondrial integrity and cardiac function through an IP3R3-dependent manner in obesity. Science Advances, 2020, 6, .	10.3	77
23	Acetylation in cardiovascular diseases: Molecular mechanisms and clinical implications. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165836.	3.8	32
24	TANK-binding kinase 1 alleviates myocardial ischemia/reperfusion injury through regulating apoptotic pathway. Biochemical and Biophysical Research Communications, 2020, 528, 574-579.	2.1	6
25	Phosphoinositide 3-kinase therapy in diabetic cardiomyopathy: unravelling an enigma. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1029-H1031.	3.2	5
26	Luteolin Attenuates Doxorubicin-Induced Cardiotoxicity Through Promoting Mitochondrial Autophagy. Frontiers in Physiology, 2020, 11, 113.	2.8	75
27	Enzyme-based autophagy in anti-neoplastic management: From molecular mechanisms to clinical therapeutics. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188366.	7.4	37
28	Mitophagy inhibitor liensinine suppresses doxorubicin-induced cardiotoxicity through inhibition of Drp1-mediated maladaptive mitochondrial fission. Pharmacological Research, 2020, 157, 104846.	7.1	84
29	Inhibition of CYP2E1 attenuates myocardial dysfunction in a murine model of insulin resistance through NLRP3-mediated regulation of mitophagy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 206-217.	3.8	18
30	ALDH2 and Stroke: A Systematic Review of the Evidence. Advances in Experimental Medicine and Biology, 2019, 1193, 195-210.	1.6	17
31	The Role of ALDH2 in Sepsis and the To-Be-Discovered Mechanisms. Advances in Experimental Medicine and Biology, 2019, 1193, 175-194.	1.6	11
32	ALDH2 Polymorphism and Ethanol Consumption: A Genetic-Environmental Interaction in Carcinogenesis. Advances in Experimental Medicine and Biology, 2019, 1193, 229-236.	1.6	11
33	Mitophagy, Mitochondrial Dynamics, and Homeostasis in Cardiovascular Aging. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-15.	4.0	135
34	Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2293-2302.	3.8	162
35	Mitochondrial ALDH2 protects against lipopolysaccharide-induced myocardial contractile dysfunction by suppression of ER stress and autophagy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1627-1641.	3.8	60
36	Genetics and Epigenetics in Aging and Longevity: Myths and Truths. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1715-1717.	3.8	8

#	Article	IF	Citations
37	Physical Exercise and Selective Autophagy: Benefit and Risk on Cardiovascular Health. Cells, 2019, 8, 1436.	4.1	71
38	Aldehyde dehydrogenase 2 deficiency promotes atherosclerotic plaque instability through accelerating mitochondrial ROS-mediated vascular smooth muscle cell senescence. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1782-1792.	3.8	24
39	Targeting autophagy in obesity: from pathophysiology to management. Nature Reviews Endocrinology, 2018, 14, 356-376.	9.6	244
40	Ablation of toll-like receptor 4 attenuates aging-induced myocardial remodeling and contractile dysfunction through NCoRI-HDAC1-mediated regulation of autophagy. Journal of Molecular and Cellular Cardiology, 2018, 119, 40-50.	1.9	61
41	MicroRNAâ€21: Bridging Binge Drinking and Cardiovascular Health. Alcoholism: Clinical and Experimental Research, 2018, 42, 678-681.	2.4	3
42	ALDH2 protects against high fat diet-induced obesity cardiomyopathy and defective autophagy: role of CaM kinase II, histone H3K9 methyltransferase SUV39H, Sirt1, and PGC- $1\hat{1}\pm$ deacetylation. International Journal of Obesity, 2018, 42, 1073-1087.	3.4	71
43	Inhibition of advanced glycation endproduct (AGE) rescues against streptozotocin-induced diabetic cardiomyopathy: Role of autophagy and ER stress. Toxicology Letters, 2018, 284, 10-20.	0.8	50
44	ULK1-regulated autophagy: A mechanism in cellular protection for ALDH2 against hyperglycemia. Toxicology Letters, 2018, 283, 106-115.	0.8	15
45	SIRT3 deficiency exacerbates p53/Parkin‑mediated mitophagy inhibition and promotes mitochondrial dysfunction: Implication for aged hearts. International Journal of Molecular Medicine, 2018, 41, 3517-3526.	4.0	57
46	Targeting Autophagy in Aging and Aging-Related Cardiovascular Diseases. Trends in Pharmacological Sciences, 2018, 39, 1064-1076.	8.7	191
47	Inhibitory effect of melatonin on necroptosis via repressing the Ripk3â€PGAM5â€CypDâ€mPTP pathway attenuates cardiac microvascular ischemia–reperfusion injury. Journal of Pineal Research, 2018, 65, e12503.	7.4	186
48	Autophagy as an emerging target in cardiorenal metabolic disease: From pathophysiology to management., 2018, 191, 1-22.		100
49	New Therapeutic Approaches in the Management of Cardiometabolic Diseases: Bringing the Concepts Together. Current Drug Targets, 2018, 19, 987-988.	2.1	7
50	Autophagic Regulation of Lipid Homeostasis in Cardiometabolic Syndrome. Frontiers in Cardiovascular Medicine, 2018, 5, 38.	2.4	29
51	Metabolic Stress, Autophagy, and Cardiovascular Aging: from Pathophysiology to Therapeutics. Trends in Endocrinology and Metabolism, 2018, 29, 699-711.	7.1	83
52	Life and Death Partners in Post-PCI Restenosis: Apoptosis, Autophagy, and The Cross-talk Between Them. Current Drug Targets, 2018, 19, 1003-1008.	2.1	24
53	TLR4 knockout attenuated high fat diet-induced cardiac dysfunction via NF-κB/JNK-dependent activation of autophagy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2001-2011.	3.8	55
54	Complex inhibition of autophagy by mitochondrial aldehyde dehydrogenase shortens lifespan and exacerbates cardiac aging. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1919-1932.	3.8	81

#	Article	IF	Citations
55	Emerging Therapeutic Potential Targeting Genetics and Epigentics in Heart Failure. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1867-1869.	3.8	6
56	Akt2 ablation prolongs life span and improves myocardial contractile function with adaptive cardiac remodeling: role of Sirt1â€mediated autophagy regulation. Aging Cell, 2017, 16, 976-987.	6.7	97
57	Sirt3 deficiency exacerbates diabetic cardiac dysfunction: Role of Foxo3A-Parkin-mediated mitophagy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1973-1983.	3.8	219
58	Polydatin protects cardiomyocytes against myocardial infarction injury by activating Sirt3. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1962-1972.	3.8	56
59	Targeting acetaldehyde dehydrogenase 2 (ALDH2) in heart failure—Recent insights and perspectives. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1933-1941.	3.8	32
60	Helix B surface peptide attenuates diabetic cardiomyopathy via AMPK-dependent autophagy. Biochemical and Biophysical Research Communications, 2017, 482, 665-671.	2.1	35
61	Cardiac Tumors: Clinical Perspective and Therapeutic Considerations. Current Drug Targets, 2017, 18, 1805-1809.	2.1	36
62	PDE5 inhibitors protect against post-infarction heart failure. Frontiers in Bioscience - Landmark, 2016, 21, 1194-1210.	3.0	15
63	Hyperglycemia and hyperlipidemia blunts the Insulin-Inpp5f negative feedback loop in the diabetic heart. Scientific Reports, 2016, 6, 22068.	3.3	13
64	Permissive role of AMPK and autophagy in adiponectin deficiency-accentuated myocardial injury and inflammation in endotoxemia. Journal of Molecular and Cellular Cardiology, 2016, 93, 18-31.	1.9	49
65	Toll-like receptor 4 knockout alleviates paraquat-induced cardiomyocyte contractile dysfunction through an autophagy-dependent mechanism. Toxicology Letters, 2016, 257, 11-22.	0.8	31
66	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
67	Epigenetics and obesity cardiomyopathy: From pathophysiology to prevention and management. , 2016, 161, 52-66.		95
68	Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction. Cardiovascular Toxicology, 2016, 16, 235-243.	2.7	11
69	Mitochondrial aldehyde dehydrogenase obliterates insulin resistance-induced cardiac dysfunction through deacetylation of PGC-1α. Oncotarget, 2016, 7, 76398-76414.	1.8	26
70	Bridging the Gap, Facing the Challenge-the 26(th) Great Wall International Congress of Cardiology (GW-ICC). Cardiovascular Diagnosis and Therapy, 2016, 6, 97-100.	1.7	6
71	Emerging potential of therapeutic targeting of autophagy and protein quality control in the management of cardiometabolic diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 185-187.	3.8	8
72	New Insights of µ-Calpain in the Pathogenesis of Diabetic Vascular Injury. Diabetes, 2015, 64, 693-695.	0.6	7

#	Article	IF	CITATIONS
73	Deficiency in adiponectin exaggerates cigarette smoking exposure-induced cardiac contractile dysfunction: Role of autophagy. Pharmacological Research, 2015, 100, 175-189.	7.1	18
74	$17 \cdot \hat{l}^2$ estradiol attenuates ovariectomy-induced changes in cardiomyocyte contractile function via activation of AMP-activated protein kinase. Toxicology Letters, 2015, 232, 253-262.	0.8	25
75	Inhibition of AMPK accentuates prolonged caloric restriction-induced change in cardiac contractile function through disruption of compensatory autophagy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 332-342.	3.8	27
76	A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type i diabetes-induced cardiac dysfunction: Role of AMPK-regulated autophagy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 319-331.	3.8	82
77	Mitochondrial aldehyde dehydrogenase 2 accentuates aging-induced cardiac remodeling and contractile dysfunction: role of AMPK, Sirt1, and mitochondrial function. Free Radical Biology and Medicine, 2014, 71, 208-220.	2.9	112
78	Targeting Autophagy for the Therapeutic Application of Histone Deacetylase Inhibitors in Ischemia/Reperfusion Heart Injury. Circulation, 2014, 129, 1088-1091.	1.6	60
79	Ablation of Akt2 protects against lipopolysaccharide-induced cardiac dysfunction: Role of Akt ubiquitination E3 ligase TRAF6. Journal of Molecular and Cellular Cardiology, 2014, 74, 76-87.	1.9	46
80	Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: Role of autophagy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1136-1148.	3.8	137
81	Akt2 knockout preserves cardiac function in high-fat diet-induced obesity by rescuing cardiac autophagosome maturation. Journal of Molecular Cell Biology, 2013, 5, 61-63.	3.3	126
82	MTOR overactivation and interrupted autophagy flux in obese hearts. Autophagy, 2013, 9, 939-941.	9.1	33
83	Cardiac-specific knockout of ETA receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction. Journal of Molecular Cell Biology, 2012, 4, 97-107.	3.3	55
84	Insulin-Like Growth Factor 1 Alleviates High-Fat Diet–Induced Myocardial Contractile Dysfunction. Hypertension, 2012, 59, 680-693.	2.7	78
85	Cardiac overexpression of metallothionein rescues cold exposure-induced myocardial contractile dysfunction through attenuation of cardiac fibrosis despite cardiomyocyte mechanical anomalies. Free Radical Biology and Medicine, 2012, 53, 194-207.	2.9	37
86	ALDH2 in alcoholic heart diseases: Molecular mechanism and clinical implications., 2011, 132, 86-95.		134
87	Autophagy in ALDH2-elicited cardioprotection against ischemic heart disease: Slayer or savior?. Autophagy, 2010, 6, 1212-1213.	9.1	39
88	Akt Plays an Important Role in Lipopolysaccharideâ€Induced Myocardial Injury and Protection. FASEB Journal, 2010, 24, 1036.14.	0.5	0
89	Cardiacâ€specific overexpression of catalase prolongs survival and attenuates paraquatâ€induced myocardial contractile dysfunction. FASEB Journal, 2010, 24, 575.3.	0.5	0