Jinhui Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1285945/publications.pdf Version: 2024-02-01

Іімніц 7нц

#	Article	IF	CITATIONS
1	Inkjet Printed Disposable Highâ€Rate Onâ€Paper Microsupercapacitors. Advanced Functional Materials, 2022, 32, 2108773.	14.9	36
2	Interfacial synthesis of crystalline quasi-two-dimensional polyaniline thin films for high-performance flexible on-chip micro-supercapacitors. Chinese Chemical Letters, 2022, 33, 3921-3924.	9.0	13
3	Optimizing Microenvironment of Asymmetric N,Sâ€Coordinated Singleâ€Atom Fe via Axial Fifth Coordination toward Efficient Oxygen Electroreduction. Small, 2022, 18, e2105387.	10.0	72
4	Modulating intramolecular electron and proton transfer kinetics for promoting carbon dioxide conversion. Chemical Communications, 2022, 58, 1966-1969.	4.1	6
5	N-confused porphyrin-based conjugated microporous polymers. Chemical Communications, 2022, 58, 2339-2342.	4.1	8
6	Boosting the electronic and catalytic properties of 2D semiconductors with supramolecular 2D hydrogen-bonded superlattices. Nature Communications, 2022, 13, 510.	12.8	19
7	Polyaryletherâ€Based 2D Covalentâ€Organic Frameworks with Inâ€Plane D–A Structures and Tunable Energy Levels for Energy Storage. Advanced Science, 2022, 9, e2104898.	11.2	31
8	Simultaneously Integrate Iron Single Atom and Nanocluster Triggered Tandem Effect for Boosting Oxygen Electroreduction. Small, 2022, 18, e2107225.	10.0	72
9	Supramolecular Proton Conductors Self-Assembled by Organic Cages. Jacs Au, 2022, 2, 819-826.	7.9	17
10	Molecular Engineering of Co ^{II} Porphyrins with Asymmetric Architecture for Improved Electrochemical CO ₂ Reduction. ChemSusChem, 2022, , .	6.8	3
11	A Narrow Bandgap, Isocyanideâ€Based Coordination Polymer Framework for Microâ€&upercapacitors with AC Lineâ€Filtering Performance. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	5
12	Porphyrinic conjugated microporous polymer anode for Li-ion batteries. Journal of Power Sources, 2022, 531, 231340.	7.8	9
13	Regulation of Crystallinity and Vertical Phase Separation Enables Highâ€Efficiency Thick Organic Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	29
14	Core–Shell Structured Fe–N–C Catalysts with Enriched Iron Sites in Surface Layers for Proton-Exchange Membrane Fuel Cells. ACS Catalysis, 2022, 12, 6409-6417.	11.2	19
15	Tertiary amine-functionalized Co(II) porphyrin to enhance the electrochemical CO2 reduction activity. Journal of Materials Science, 2022, 57, 10129-10140.	3.7	4
16	A sulfur-containing polymer-plasticized poly(ethylene oxide)-based electrolyte enables highly effective lithium dendrite suppression. Journal of Materials Chemistry A, 2022, 10, 14849-14856.	10.3	4
17	CoN ₅ Sites Constructed by Anchoring Co Porphyrins on Vinyleneâ€Linked Covalent Organic Frameworks for Electroreduction of Carbon Dioxide. Small, 2022, 18, .	10.0	23
18	Selfâ€Assembly Approach Towards MoS 2 â€Embedded Hierarchical Porous Carbons for Enhanced Electrocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2021, 27, 2155-2164.	3.3	4

#	Article	IF	CITATIONS
19	Ultrathin PTAA interlayer in conjunction with azulene derivatives for the fabrication of inverted perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 14709-14719.	5.5	21
20	Facile fabrication of graphene-based high-performance microsupercapacitors operating at a high temperature of 150 A°C. Nanoscale Advances, 2021, 3, 4674-4679.	4.6	4
21	Regulating the Spin State of Nickel in Molecular Catalysts for Boosting Carbon Dioxide Reduction. ACS Applied Energy Materials, 2021, 4, 2891-2898.	5.1	25
22	Recovered Carbon from Coal Gasification Fine Slag as Electrocatalyst for Oxygen Reduction Reaction and Zinc–Air Battery. Energy Technology, 2021, 9, 2000890.	3.8	20
23	Quinone-Enriched Conjugated Microporous Polymer as an Organic Cathode for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 9064-9073.	8.0	44
24	B/N-Enriched Semi-Conductive Polymer Film for Micro-Supercapacitors with AC Line-Filtering Performance. Langmuir, 2021, 37, 2523-2531.	3.5	22
25	Rational Control of Topological Defects in Porous Carbon for Highâ€Efficiency Carbon Dioxide Conversion. Advanced Materials Interfaces, 2021, 8, 2100051.	3.7	14
26	A Terpyridine-Fe2+-Based Coordination Polymer Film for On-Chip Micro-Supercapacitor with AC Line-Filtering Performance. Polymers, 2021, 13, 1002.	4.5	16
27	Catecholâ€Coordinated Framework Filmâ€based Microâ€Supercapacitors with AC Line Filtering Performance. Chemistry - A European Journal, 2021, 27, 6340-6347.	3.3	20
28	Mass Transport Behaviors in Graphene and Polyaniline Heterostructure–Based Microsupercapacitors. Advanced Energy and Sustainability Research, 2021, 2, 2100006.	5.8	1
29	Perovskite oxide and polyazulene–based heterostructure for high–performance supercapacitors. Journal of Applied Polymer Science, 2021, 138, 51198.	2.6	11
30	Tungsten Oxide/Reduced Graphene Oxide Aerogel with Low ontent Platinum as Highâ€Performance Electrocatalyst for Hydrogen Evolution Reaction. Small, 2021, 17, e2102159.	10.0	24
31	Constructing Catalytic Crown Ether-Based Covalent Organic Frameworks for Electroreduction of CO ₂ . ACS Energy Letters, 2021, 6, 3496-3502.	17.4	53
32	Microporous Sulfur-Doped Carbon Atoms as Supports for Sintering-Resistant Platinum Nanocluster Catalysts. ACS Applied Nano Materials, 2021, 4, 9489-9496.	5.0	9
33	Spectroscopic Evidence of New Low-Dimensional Planar Carbon Allotropes Based on Biphenylene via On-Surface Ullmann Coupling. Chemistry, 2021, 3, 1057-1062.	2.2	6
34	High-entropy carbons: From high-entropy aromatic species to single-atom catalysts for electrocatalysis. Chemical Engineering Journal, 2021, 426, 131320.	12.7	14
35	Atomic Ni and Cu co-anchored 3D nanoporous graphene as an efficient oxygen reduction electrocatalyst for zincâ \in air batteries. Nanoscale, 2021, 13, 10862-10870.	5.6	21
36	Enhancing charge separation in conjugated microporous polymers for efficient photocatalytic hydrogen evolution. Materials Advances, 2021, 2, 7379-7383.	5.4	2

#	Article	IF	CITATIONS
37	Electrochemical reduction of carbon dioxide with nearly 100% carbon monoxide faradaic efficiency from vacancy-stabilized single-atom active sites. Journal of Materials Chemistry A, 2021, 9, 24955-24962.	10.3	30
38	Chemically Stable Polyarylether-Based Metallophthalocyanine Frameworks with High Carrier Mobilities for Capacitive Energy Storage. Journal of the American Chemical Society, 2021, 143, 17701-17707.	13.7	42
39	A class of organic cages featuring twin cavities. Nature Communications, 2021, 12, 6124.	12.8	15
40	Quantum Capacitance through Molecular Infiltration of 7,7,8,8-Tetracyanoquinodimethane in Metal–Organic Framework/Covalent Organic Framework Hybrids. ACS Nano, 2021, 15, 18580-18589.	14.6	30
41	Interfacial Approach toward Benzeneâ€Bridged Polypyrrole Film–Based Microâ€Supercapacitors with Ultrahigh Volumetric Power Density. Advanced Functional Materials, 2020, 30, 1908243.	14.9	60
42	Boosting Oxygen Reduction of Single Iron Active Sites via Geometric and Electronic Engineering: Nitrogen and Phosphorus Dual Coordination. Journal of the American Chemical Society, 2020, 142, 2404-2412.	13.7	680
43	lonic Polyimide Derived Porous Carbon Nanosheets as Highâ€Efficiency Oxygen Reduction Catalysts for Zn–Air Batteries. Chemistry - A European Journal, 2020, 26, 6525-6534.	3.3	11
44	A Novel Heterostructure Based on RuMo Nanoalloys and Nâ€doped Carbon as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Advanced Materials, 2020, 32, e2005433.	21.0	151
45	Azuleneâ€Based Molecules, Polymers, and Frameworks for Optoelectronic and Energy Applications. Small Methods, 2020, 4, 2000628.	8.6	50
46	Precise Control of π-Electron Magnetism in Metal-Free Porphyrins. Journal of the American Chemical Society, 2020, 142, 18532-18540.	13.7	31
47	Iron clusters boosted performance in electrocatalytic carbon dioxide conversion. Journal of Materials Chemistry A, 2020, 8, 21661-21667.	10.3	8
48	Supercapacitors with alternating current line-filtering performance. BMC Materials, 2020, 2, .	6.8	40
49	Platinum Atoms and Nanoparticles Embedded Porous Carbons for Hydrogen Evolution Reaction. Materials, 2020, 13, 1513.	2.9	7
50	2D Porous Polymers with sp ² â€Carbon Connections and Sole sp ² â€Carbon Skeletons. Advanced Functional Materials, 2020, 30, 2000857.	14.9	42
51	A Nitrogenâ€Rich 2D sp ² â€Carbonâ€Linked Conjugated Polymer Framework as a Highâ€Performanc Cathode for Lithiumâ€Ion Batteries. Angewandte Chemie, 2019, 131, 859-863.	^{ce} 2.0	71
52	Efficient alkaline hydrogen evolution on atomically dispersed Ni–N _x Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy and Environmental Science, 2019, 12, 149-156.	30.8	416
53	Sulfur-anchored azulene as a cathode material for Li–S batteries. Chemical Communications, 2019, 55, 9047-9050.	4.1	31
54	Self-Assembly of Integrated Tubular Microsupercapacitors with Improved Electrochemical Performance and Self-Protective Function. ACS Nano, 2019, 13, 8067-8075.	14.6	57

#	Article	IF	CITATIONS
55	Atomic Ni Anchored Covalent Triazine Framework as High Efficient Electrocatalyst for Carbon Dioxide Conversion. Advanced Functional Materials, 2019, 29, 1806884.	14.9	210
56	The art of two-dimensional soft nanomaterials. Science China Chemistry, 2019, 62, 1145-1193.	8.2	52
57	Charge Transfer Salt and Graphene Heterostructureâ€Based Microâ€Supercapacitors with Alternating Current Lineâ€Filtering Performance. Small, 2019, 15, e1901494.	10.0	64
58	Viologen-inspired functional materials: synthetic strategies and applications. Journal of Materials Chemistry A, 2019, 7, 23337-23360.	10.3	186
59	Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nature Communications, 2019, 10, 1392.	12.8	424
60	Enhanced Antifouling and Anticorrosion Properties of Stainless Steel by Biomimetic Anchoring PEGDMA-Cross-Linking Polycationic Brushes. Industrial & Engineering Chemistry Research, 2019, 58, 7107-7119.	3.7	23
61	In situ nanoarchitecturing and active-site engineering toward highly efficient carbonaceous electrocatalysts. Nano Energy, 2019, 59, 207-215.	16.0	54
62	Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric micro-supercapacitors with ultrahigh energy density. Materials Horizons, 2019, 6, 1041-1049.	12.2	54
63	Redox gated polymer memristive processing memory unit. Nature Communications, 2019, 10, 736.	12.8	99
64	Znâ€lon Hybrid Microâ€Supercapacitors with Ultrahigh Areal Energy Density and Longâ€Term Durability. Advanced Materials, 2019, 31, e1806005.	21.0	266
65	A Nitrogenâ€Rich 2D sp ² â€Carbonâ€Linked Conjugated Polymer Framework as a Highâ€Performanc Cathode for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 849-853.	се _{13.8}	275
66	Musselâ€Inspired Nitrogenâ€Doped Porous Carbon as Anode Materials for Sodiumâ€Ion Batteries. Energy Technology, 2019, 7, 1800763.	3.8	9
67	Viologenâ€Hypercrosslinked Ionic Porous Polymer Films as Active Layers for Electronic and Energy Storage Devices. Advanced Materials Interfaces, 2018, 5, 1701679.	3.7	27
68	Thermoswitchable on-chip microsupercapacitors: one potential self-protection solution for electronic devices. Energy and Environmental Science, 2018, 11, 1717-1722.	30.8	79
69	Selfâ€Activating, Capacitive Anion Intercalation Enables Highâ€Power Graphite Cathodes. Advanced Materials, 2018, 30, e1800533.	21.0	121
70	Accelerated Hydrogen Evolution Kinetics on NiFe‣ayered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites. Advanced Materials, 2018, 30, 1706279.	21.0	601
71	Synergetic Contribution of Boron and Fe–N _{<i>x</i>} Species in Porous Carbons toward Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Letters, 2018, 3, 252-260.	17.4	269
72	Polymer nanosheets derived porous carbon nanosheets as high efficient electrocatalysts for oxygen reduction reaction. Journal of Colloid and Interface Science, 2018, 516, 9-15.	9.4	13

#	Article	IF	CITATIONS
73	Vertically Aligned MoS ₂ Nanosheets Patterned on Electrochemically Exfoliated Graphene for Highâ€Performance Lithium and Sodium Storage. Advanced Energy Materials, 2018, 8, 1702254.	19.5	274
74	Cobaloxime anchored MoS ₂ nanosheets as electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 138-144.	10.3	49
75	Two-Dimensional Porous Polymers: From Sandwich-like Structure to Layered Skeleton. Accounts of Chemical Research, 2018, 51, 3191-3202.	15.6	108
76	Pyrolyzed Triazine-Based Nanoporous Frameworks Enable Electrochemical CO ₂ Reduction in Water. ACS Applied Materials & Interfaces, 2018, 10, 43588-43594.	8.0	29
77	Cobalt-Doped Porous Carbon Nanosheets Derived from 2D Hypercrosslinked Polymer with CoN4 for High Performance Electrochemical Capacitors. Polymers, 2018, 10, 1339.	4.5	17
78	WS ₂ –Graphite Dual-Ion Batteries. Nano Letters, 2018, 18, 7155-7164.	9.1	88
79	Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chemical Society Reviews, 2018, 47, 7426-7451.	38.1	384
80	S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion. Frontiers of Chemical Science and Engineering, 2018, 12, 346-357.	4.4	9
81	Recent Advances in RAFT Polymerization: Novel Initiation Mechanisms and Optoelectronic Applications. Polymers, 2018, 10, 318.	4.5	79
82	Azulene-bridged coordinated framework based quasi-molecular rectifier. Journal of Materials Chemistry C, 2017, 5, 2223-2229.	5.5	13
83	2D Heterostructures Derived from MoS ₂ â€Templated, Cobaltâ€Containing Conjugated Microporous Polymer Sandwiches for the Oxygen Reduction Reaction and Electrochemical Energy Storage. ChemElectroChem, 2017, 4, 709-715.	3.4	30
84	Hollow-structured conjugated porous polymer derived Iron/Nitrogen-codoped hierarchical porous carbons as highly efficient electrocatalysts. Journal of Colloid and Interface Science, 2017, 497, 108-116.	9.4	28
85	Coordination Polymer Framework Based Onâ€Chip Micro‣upercapacitors with AC Lineâ€Filtering Performance. Angewandte Chemie, 2017, 129, 3978-3982.	2.0	22
86	Coordination Polymer Framework Based Onâ€Chip Microâ€Supercapacitors with AC Lineâ€Filtering Performance. Angewandte Chemie - International Edition, 2017, 56, 3920-3924.	13.8	140
87	Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting. Small Methods, 2017, 1, 1700090.	8.6	106
88	An interfacial engineering approach towards two-dimensional porous carbon hybrids for high performance energy storage and conversion. Journal of Materials Chemistry A, 2017, 5, 1567-1574.	10.3	22
89	Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017, 8, 15437.	12.8	813
90	Integrated Hierarchical Cobalt Sulfide/Nickel Selenide Hybrid Nanosheets as an Efficient Three-dimensional Electrode for Electrochemical and Photoelectrochemical Water Splitting. Nano Letters, 2017, 17, 4202-4209.	9.1	263

#	Article	IF	CITATIONS
91	Silicon anodes protected by a nitrogen-doped porous carbon shell for high-performance lithium-ion batteries. Nanoscale, 2017, 9, 8871-8878.	5.6	81
92	Ionothermally synthesized hierarchical porous Schiff-base-type polymeric networks with ultrahigh specific surface area for supercapacitors. RSC Advances, 2017, 7, 19934-19939.	3.6	6
93	Molybdenum Carbide-Embedded Nitrogen-Doped Porous Carbon Nanosheets as Electrocatalysts for Water Splitting in Alkaline Media. ACS Nano, 2017, 11, 3933-3942.	14.6	367
94	Stimulusâ€Responsive Microâ€Supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window. Advanced Materials, 2017, 29, 1604491.	21.0	153
95	In Situ Coupling Strategy for the Preparation of FeCo Alloys and Co ₄ N Hybrid for Highly Efficient Oxygen Evolution. Advanced Materials, 2017, 29, 1704091.	21.0	165
96	Dualâ€Graphene Rechargeable Sodium Battery. Small, 2017, 13, 1702449.	10.0	64
97	Ternary Porous Cobalt Phosphoselenide Nanosheets: An Efficient Electrocatalyst for Electrocatalytic and Photoelectrochemical Water Splitting. Advanced Materials, 2017, 29, 1701589.	21.0	219
98	Toward Activity Origin of Electrocatalytic Hydrogen Evolution Reaction on Carbonâ€Rich Crystalline Coordination Polymers. Small, 2017, 13, 1700783.	10.0	16
99	Toward a molecular design of porous carbon materials. Materials Today, 2017, 20, 592-610.	14.2	202
100	Scalable Fabrication and Integration of Graphene Microsupercapacitors through Full Inkjet Printing. ACS Nano, 2017, 11, 8249-8256.	14.6	280
101	Graphene-coupled nitrogen-enriched porous carbon nanosheets for energy storage. Journal of Materials Chemistry A, 2017, 5, 16732-16739.	10.3	42
102	Flexible All‣olid‣tate Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene. Advanced Energy Materials, 2017, 7, 1601847.	19.5	379
103	Efficient Electrochemical and Photoelectrochemical Water Splitting by a 3D Nanostructured Carbon Supported on Flexible Exfoliated Graphene Foil. Advanced Materials, 2017, 29, 1604480.	21.0	157
104	Immobilizing Molecular Metal Dithiolene–Diamine Complexes on 2D Metal–Organic Frameworks for Electrocatalytic H ₂ Production. Chemistry - A European Journal, 2017, 23, 2255-2260.	3.3	208
105	Substantial Cyanoâ€Substituted Fully <i>sp²</i> â€Carbonâ€Linked Framework: Metalâ€Free Approach and Visibleâ€Lightâ€Driven Hydrogen Evolution. Advanced Functional Materials, 2017, 27, 1703146.	14.9	138
106	Recent Advances in Boron-Containing Conjugated Porous Polymers. Polymers, 2016, 8, 191.	4.5	30
107	Sulfurâ€Enriched Conjugated Polymer Nanosheet Derived Sulfur and Nitrogen coâ€Doped Porous Carbon Nanosheets as Electrocatalysts for Oxygen Reduction Reaction and Zinc–Air Battery. Advanced Functional Materials, 2016, 26, 5893-5902.	14.9	214
108	Siliciumâ€kompatible Mikroâ€Superkondensatoren. Angewandte Chemie, 2016, 128, 6244-6246.	2.0	2

#	Article	IF	CITATIONS
109	Quantitative Control of Pore Size of Mesoporous Carbon Nanospheres through the Selfâ€Assembly of Diblock Copolymer Micelles in Solution. Small, 2016, 12, 3155-3163.	10.0	117
110	Twoâ€Dimensional Coreâ€6helled Porous Hybrids as Highly Efficient Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2016, 55, 6858-6863.	13.8	127
111	Siliconâ€Compatible Carbonâ€Based Microâ€Supercapacitors. Angewandte Chemie - International Edition, 2016, 55, 6136-6138.	13.8	27
112	In Situ Synthesis and Characterization of Poly(aryleneethynylene)â€Grafted Reduced Graphene Oxide. Chemistry - A European Journal, 2016, 22, 2247-2252.	3.3	14
113	Twoâ€Dimensional Coreâ€Shelled Porous Hybrids as Highly Efficient Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2016, 128, 6972-6977.	2.0	23
114	Boron, nitrogen, and phosphorous ternary doped graphene aerogel with hierarchically porous structures as highly efficient electrocatalysts for oxygen reduction reaction. New Journal of Chemistry, 2016, 40, 6022-6029.	2.8	62
115	Template-directed approach to two-dimensional molybdenum phosphide–carbon nanocomposites with high catalytic activities in the hydrogen evolution reaction. New Journal of Chemistry, 2016, 40, 6015-6021.	2.8	25
116	A two-dimensional conjugated polymer framework with fully sp ² -bonded carbon skeleton. Polymer Chemistry, 2016, 7, 4176-4181.	3.9	350
117	Twoâ€Dimensional Mesoscaleâ€Ordered Conducting Polymers. Angewandte Chemie - International Edition, 2016, 55, 12516-12521.	13.8	89
118	Anionic porous polymers with tunable structures and catalytic properties. Journal of Materials Chemistry A, 2016, 4, 15162-15168.	10.3	29
119	Highly Efficient Electrocatalysts for Oxygen Reduction Reaction Based on 1D Ternary Doped Porous Carbons Derived from Carbon Nanotube Directed Conjugated Microporous Polymers. Advanced Functional Materials, 2016, 26, 8255-8265.	14.9	65
120	A π-extended luminogen with colorimetric and off/on fluorescent multi-channel detection for Cu ²⁺ with extremely high selectivity and sensitivity via nonarylamine-based organic mixed valence. RSC Advances, 2016, 6, 76691-76695.	3.6	2
121	Dualâ€Template Synthesis of 2D Mesoporous Polypyrrole Nanosheets with Controlled Pore Size. Advanced Materials, 2016, 28, 8365-8370.	21.0	163
122	Cobalt/nitrogen co-doped porous carbon nanosheets as highly efficient catalysts for the oxygen reduction reaction in both basic and acidic media. RSC Advances, 2016, 6, 82341-82347.	3.6	18
123	Twoâ€Dimensional Mesoscaleâ€Ordered Conducting Polymers. Angewandte Chemie, 2016, 128, 12704-12709.	2.0	21
124	Aromatic azaheterocycle-cored luminogens with tunable physical properties via nitrogen atoms for sensing strong acids. Journal of Materials Chemistry C, 2016, 4, 7640-7648.	5.5	50
125	Angular BN-Heteroacenes with <i>syn</i> -Structure-Induced Promising Properties as Host Materials of Blue Organic Light-Emitting Diodes. Organic Letters, 2016, 18, 3618-3621.	4.6	57
126	Engineering water dissociation sites in MoS ₂ nanosheets for accelerated electrocatalytic hydrogen production. Energy and Environmental Science, 2016, 9, 2789-2793.	30.8	503

#	Article	IF	CITATIONS
127	Interface Engineering of MoS ₂ /Ni ₃ S ₂ Heterostructures for Highly Enhanced Electrochemical Overallâ€Waterâ€&plitting Activity. Angewandte Chemie - International Edition, 2016, 55, 6702-6707.	13.8	1,159
128	Nitrogenâ€Doped Porous Carbon Superstructures Derived from Hierarchical Assembly of Polyimide Nanosheets. Advanced Materials, 2016, 28, 1981-1987.	21.0	390
129	Interface Engineering of MoS ₂ /Ni ₃ S ₂ Heterostructures for Highly Enhanced Electrochemical Overallâ€Waterâ€5plitting Activity. Angewandte Chemie, 2016, 128, 6814-6819.	2.0	403
130	New nitrogen-rich azo-bridged porphyrin-conjugated microporous networks for high performance of gas capture and storage. RSC Advances, 2016, 6, 30048-30055.	3.6	66
131	Interactions and Translational Dynamics of Phosphatidylinositol Bisphosphate (PIP ₂) Lipids in Asymmetric Lipid Bilayers. Langmuir, 2016, 32, 1732-1741.	3.5	20
132	Triple Boron-Cored Chromophores Bearing Discotic 5,11,17-Triazatrinaphthylene-Based Ligands. Organic Letters, 2016, 18, 1398-1401.	4.6	40
133	Nitrogen-enriched, ordered mesoporous carbons for potential electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 2286-2292.	10.3	84
134	BN-heteroacene-cored luminogens with dual channel detection for fluoride anions. Journal of Materials Chemistry C, 2016, 4, 1159-1164.	5.5	37
135	Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. Energy and Environmental Science, 2016, 9, 478-483.	30.8	774
136	Graphene-directed two-dimensional porous carbon frameworks for high-performance lithium–sulfur battery cathodes. Journal of Materials Chemistry A, 2016, 4, 314-320.	10.3	83
137	Conjugated Microporous Polymers with Dimensionalityâ€Controlled Heterostructures for Green Energy Devices. Advanced Materials, 2015, 27, 3789-3796.	21.0	210
138	Metalâ€Phosphideâ€Containing Porous Carbons Derived from an Ionicâ€Polymer Framework and Applied as Highly Efficient Electrochemical Catalysts for Water Splitting. Advanced Functional Materials, 2015, 25, 3899-3906.	14.9	176
139	One-pot approach to Pd-loaded porous polymers with properties tunable by the oxidation state of the phosphorus core. Polymer Chemistry, 2015, 6, 6351-6357.	3.9	29
140	Efficient approach to iron/nitrogen co-doped graphene materials as efficient electrochemical catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 7767-7772.	10.3	78
141	Sulfur-doped porous carbon nanosheets as high performance electrocatalysts for PhotoFuelCells. RSC Advances, 2015, 5, 27953-27963.	3.6	15
142	Synthesis and Properties of <i>C</i> _{<i>2h</i>} -Symmetric BN-Heteroacenes Tailored through Aromatic Central Cores. Journal of Organic Chemistry, 2015, 80, 10127-10133.	3.2	44
143	Cross-linked polymer-derived B/N co-doped carbon materials with selective capture of CO2. Journal of Materials Chemistry A, 2015, 3, 23352-23359.	10.3	36
144	Hypercrosslinked porous polymer nanosheets: 2D RAFT agent directed emulsion polymerization for multifunctional applications. Polymer Chemistry, 2015, 6, 7171-7178.	3.9	43

#	Article	IF	CITATIONS
145	Compact Coupled Graphene and Porous Polyaryltriazineâ€Derived Frameworks as High Performance Cathodes for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2015, 54, 1812-1816.	13.8	142
146	Nitrogen-enriched hierarchically porous carbon materials fabricated by graphene aerogel templated Schiff-base chemistry for high performance electrochemical capacitors. Polymer Chemistry, 2015, 6, 1088-1095.	3.9	58
147	Twoâ€Dimensional Soft Nanomaterials: A Fascinating World of Materials. Advanced Materials, 2015, 27, 403-427.	21.0	437
148	Resistance-Switchable Graphene Oxide-Polymer Nanocomposites for Molecular Electronics. ChemElectroChem, 2014, 1, 514-519.	3.4	21
149	Resistance-Switchable Graphene Oxide-Polymer Nanocomposites for Molecular Electronics. ChemElectroChem, 2014, 1, 478-478.	3.4	0
150	Graphene Coupled Schiffâ€base Porous Polymers: Towards Nitrogenâ€enriched Porous Carbon Nanosheets with Ultrahigh Electrochemical Capacity. Advanced Materials, 2014, 26, 3081-3086.	21.0	224
151	A solution-processable polymer-grafted graphene oxide derivative for nonvolatile rewritable memory. Polymer Chemistry, 2014, 5, 2010-2017.	3.9	36
152	Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nature Communications, 2014, 5, 4973.	12.8	921
153	2D polyacrylonitrile brush derived nitrogen-doped carbon nanosheets for high-performance electrocatalysts in oxygen reduction reaction. Polymer Chemistry, 2014, 5, 2057-2064.	3.9	54
154	Polyaniline nanosheet derived B/N co-doped carbon nanosheets as efficient metal-free catalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 7742.	10.3	124
155	Twoâ€Dimensional Sandwichâ€Type, Grapheneâ€Based Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2013, 52, 9668-9672.	13.8	220
156	One-step preparation of novel conjugated porous polymer with tubular structure. Science China Chemistry, 2013, 56, 1112-1118.	8.2	1
157	Boron-ï€-nitrogen-based conjugated porous polymers with multi-functions. Journal of Materials Chemistry A, 2013, 1, 13878.	10.3	67
158	Rücktitelbild: Two-Dimensional Sandwich-Type, Graphene-Based Conjugated Microporous Polymers (Angew. Chem. 37/2013). Angewandte Chemie, 2013, 125, 10044-10044.	2.0	0
159	Multiwalled carbon nanotubes covalently functionalized with poly(<i>N</i> â€vinylcarbazole) via RAFT polymerization: Synthesis and nonliner optical properties. Journal of Polymer Science Part A, 2010, 48, 3161-3168.	2.3	25
160	A novel twoâ \in dimensional conjugated coordination framework with a narrow bandgap for microâ \in supercapacitors. Energy Technology, O, , .	3.8	4