
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1285419/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CO2CONCENTRATING MECHANISMS IN ALGAE: Mechanisms, Environmental Modulation, and Evolution. Annual Review of Plant Biology, 2005, 56, 99-131.	18.7	1,238
2	Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research, 2010, 32, 119-137.	1.8	909
3	ADAPTATION OF UNICELLULAR ALGAE TO IRRADIANCE: AN ANALYSIS OF STRATEGIES. New Phytologist, 1983, 93, 157-191.	7.3	640
4	What is conservation physiology? Perspectives on an increasingly integrated and essential science. , 2013, 1, cot001-cot001.		350
5	Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature, 2017, 552, 400-403.	27.8	290
6	The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia, 2004, 43, 26-40.	1.4	285
7	Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Functional Plant Biology, 2002, 29, 355.	2.1	284
8	Means and extremes: building variability into communityâ€level climate change experiments. Ecology Letters, 2013, 16, 799-806.	6.4	278
9	FOURIER TRANSFORM INFRARED SPECTROSCOPY AS A NOVEL TOOL TO INVESTIGATE CHANGES IN INTRACELLULAR MACROMOLECULAR POOLS IN THE MARINE MICROALGA CHAETOCEROS MUELLERII (BACILLARIOPHYCEAE). Journal of Phycology, 2001, 37, 271-279.	2.3	258
10	Using marine macroalgae for carbon sequestration: a critical appraisal. Journal of Applied Phycology, 2011, 23, 877-886.	2.8	246
11	Approaches for determining phytoplankton nutrient limitation. Aquatic Sciences, 2001, 63, 44-69.	1.5	244
12	Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Global Change Biology, 2011, 17, 2488-2497.	9.5	233
13	Algal evolution in relation to atmospheric CO ₂ : carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 493-507.	4.0	231
14	Extremophilic micro-algae and their potential contribution in biotechnology. Bioresource Technology, 2015, 184, 363-372.	9.6	224
15	Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynthesis Research, 2011, 109, 281-296.	2.9	218
16	The concept of light intensity adaptation in marine phytoplankton: Some experiments with Phaeodactylum tricornutum. Marine Biology, 1976, 37, 377-387.	1.5	212
17	Fourier Transform Infrared microspectroscopy and chemometrics as a tool for the discrimination of cyanobacterial strains. Phytochemistry, 1999, 52, 407-417.	2.9	201
18	Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynthesis Research, 2014, 121, 111-124.	2.9	199

JOHN BEARDALL

#	Article	IF	CITATIONS
19	Living in a high CO ₂ world: impacts of global climate change on marine phytoplankton. Plant Ecology and Diversity, 2009, 2, 191-205.	2.4	177
20	Put out the light, and then put out the light. Journal of the Marine Biological Association of the United Kingdom, 2000, 80, 1-25.	0.8	174
21	Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation. Functional Plant Biology, 2002, 29, 335.	2.1	171
22	Utilization of inorganic carbon by marine microalgae. Journal of Experimental Marine Biology and Ecology, 1987, 107, 75-86.	1.5	164
23	Comparison of marine macrophytes for their contributions to blue carbon sequestration. Ecology, 2015, 96, 3043-3057.	3.2	162
24	Changes in pH at the exterior surface of plankton with ocean acidification. Nature Climate Change, 2012, 2, 510-513.	18.8	158
25	Can macroalgae contribute to blue carbon? An <scp>A</scp> ustralian perspective. Limnology and Oceanography, 2015, 60, 1689-1706.	3.1	153
26	Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae, 2016, 54, 44-53.	4.8	152
27	Effects of pre-processing of Raman spectra onin vivo classification of nutrient status of microalgal cells. Journal of Chemometrics, 2006, 20, 193-197.	1.3	146
28	Algae lacking carbon-concentrating mechanisms. Canadian Journal of Botany, 2005, 83, 879-890.	1.1	145
29	Effect of salinity on fatty acid composition of a green microalga from an antarctic hypersaline lake. Phytochemistry, 1997, 45, 655-658.	2.9	139
30	Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytologist, 2009, 181, 295-309.	7.3	138
31	Effects of Ocean Acidification on Marine Photosynthetic Organisms Under the Concurrent Influences of Warming, UV Radiation, and Deoxygenation. Frontiers in Marine Science, 2019, 6, .	2.5	136
32	PHOTOSYNTHETIC FUNCTION IN <i>DUNALIELLA TERTIOLECTA</i> (CHLOROPHYTA) DURING A NITROGEN STARVATION AND RECOVERY CYCLE. Journal of Phycology, 2003, 39, 897-905.	2.3	118
33	A Portable Raman Acoustic Levitation Spectroscopic System for the Identification and Environmental Monitoring of Algal Cells. Analytical Chemistry, 2005, 77, 4955-4961.	6.5	118
34	Inorganic C-sources for Lemanea, Cladophora and Ranunculus in a fast-flowing stream: Measurements of gas exchange and of carbon isotope ratio and their ecological implications. Oecologia, 1982, 53, 68-78.	2.0	117
35	Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes. , 2000, 63, 123-134.		117
36	Mapping of nutrient-induced biochemical changes in living algal cells using synchrotron infrared microspectroscopy. FEMS Microbiology Letters, 2005, 249, 219-225.	1.8	112

#	Article	IF	CITATIONS
37	The possible evolution and future of CO2-concentrating mechanisms. Journal of Experimental Botany, 2017, 68, 3701-3716.	4.8	111
38	Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin's insectivorous plants. Journal of Experimental Botany, 2009, 60, 3975-3987.	4.8	108
39	Biodiversity of Marine Plants in an Era of Climate Change: Some Predictions Based on Physiological Performance. Botanica Marina, 1998, 41, .	1.2	106
40	TRANSPORT OF INORGANIC CARBON AND THE â€~CO ₂ CONCENTRATING MECHANISM' IN <i>CHLORELLA EMERSONII</i> (CHLOROPHYCEAE) ¹ . Journal of Phycology, 1981, 17, 134-141.	2.3	105
41	IS THE GROWTH RATE HYPOTHESIS APPLICABLE TO MICROALGAE?1. Journal of Phycology, 2010, 46, 1-12.	2.3	105
42	Inorganic carbon acquisition by Xiphophora chondrophylla (Phaeophyta, Fucales). Phycologia, 1996, 35, 83-89.	1.4	104
43	The ins and outs of CO ₂ . Journal of Experimental Botany, 2016, 67, 1-13.	4.8	102
44	Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers. Photochemical and Photobiological Sciences, 2009, 8, 1257-1265.	2.9	101
45	Addressing calcium carbonate cycling in blue carbon accounting. Limnology and Oceanography Letters, 2017, 2, 195-201.	3.9	100
46	Carbon Isotope Discrimination and the CO2 Accumulating Mechanism in Chlorella emersonii. Journal of Experimental Botany, 1982, 33, 729-737.	4.8	96
47	<i>In vivo</i> prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiology Letters, 2007, 275, 24-30.	1.8	93
48	CO 2 concentrating mechanisms and environmental change. Aquatic Botany, 2014, 118, 24-37.	1.6	92
49	Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nature Communications, 2015, 6, 8714.	12.8	91
50	Seaweeds in Cold Seas: Evolution and Carbon Acquisition. Annals of Botany, 2002, 90, 525-536.	2.9	90
51	A comparison of methods for detection of phosphate limitation in microalgae. Aquatic Sciences, 2001, 63, 107-121.	1.5	86
52	Protein turnover in relation to maintenance metabolism at low photon flux in two marine microalgae. Plant, Cell and Environment, 2003, 26, 693-703.	5.7	86
53	Interactive Effects of Ocean Acidification and Nitrogen-Limitation on the Diatom Phaeodactylum tricornutum. PLoS ONE, 2012, 7, e51590.	2.5	86
54	Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. Journal of Applied Phycology, 2016, 28, 1509-1520.	2.8	84

#	Article	IF	CITATIONS
55	Carbon dioxide mitigation potential of seaweed aquaculture beds (SABs). Journal of Applied Phycology, 2017, 29, 2363-2373.	2.8	84
56	Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). Journal of Photochemistry and Photobiology B: Biology, 2006, 82, 161-172.	3.8	83
57	THE PATH OF CARBON IN PHOTOSYNTHESIS BY MARINE PHYTOPLANKTON12. Journal of Phycology, 1976, 12, 409-417.	2.3	80
58	Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae. Chemosphere, 2016, 147, 420-429.	8.2	79
59	Photosynthesis in a marine diatom. Nature, 2001, 412, 40-41.	27.8	77
60	EVOLUTIONARY RESPONSES OF A COCCOLITHOPHORID <i>GEPHYROCAPSA OCEANICA </i> TO OCEAN ACIDIFICATION. Evolution; International Journal of Organic Evolution, 2013, 67, 1869-1878.	2.3	77
61	Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments. Nature Microbiology, 2019, 4, 1014-1023.	13.3	76
62	The future of seaweed aquaculture in a rapidly changing world. European Journal of Phycology, 2017, 52, 495-505.	2.0	75
63	Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions. Aquatic Microbial Ecology, 2009, 56, 297-308.	1.8	74
64	Photosynthesis and photorespiration in marine phytoplankton. Aquatic Botany, 1989, 34, 105-130.	1.6	73
65	Regulation of inorganic carbon acquisition by phosphorus limitation in the green alga Chlorella emersonii. Canadian Journal of Botany, 2005, 83, 859-864.	1.1	73
66	Decreased photosynthesis and growth with reduced respiration in the model diatom <i>Phaeodactylum tricornutum</i> grown under elevated <scp>CO</scp> ₂ over 1800 generations. Global Change Biology, 2017, 23, 127-137.	9.5	73
67	Neither elevated nor reduced CO2 affects the photophysiological performance of the marine Antarctic diatom Chaetoceros brevis. Journal of Experimental Marine Biology and Ecology, 2011, 406, 38-45.	1.5	71
68	Isolation and biochemical characterisation of two thermophilic green algal species- Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide. Algal Research, 2018, 30, 28-37.	4.6	71
69	Environmental regulation of CO ₂ -concentrating mechanisms in microalgae. Canadian Journal of Botany, 1998, 76, 1010-1017.	1.1	69
70	Studies on enhanced post-illumination respiration in microalgae. Journal of Plankton Research, 1994, 16, 1401-1410.	1.8	65
71	Effects of salinity on inorganic carbon utilization and carbonic anhydrase activity in the halotolerant alga Dunaliella salina (Chlorophyta). Phycologia, 1991, 30, 220-225.	1.4	64
72	BENTHIC MICROALGAL COLONIZATION IN STREAMS OF DIFFERING RIPARIAN COVER AND LIGHT AVAILABILITY. Journal of Phycology, 2004, 40, 1004-1012.	2.3	64

#	Article	IF	CITATIONS
73	Phenotypic Plasticity of Southern Ocean Diatoms: Key to Success in the Sea Ice Habitat?. PLoS ONE, 2013, 8, e81185.	2.5	63
74	Ocean acidification as a multiple driver: how interactions between changing seawater carbonate parameters affect marine life. Marine and Freshwater Research, 2020, 71, 263.	1.3	62
75	Current understanding and challenges for aquatic primary producers in a world with rising micro- and nano-plastic levels. Journal of Hazardous Materials, 2021, 406, 124685.	12.4	62
76	Interactive effects of nutrient supply and other environmental factors on the sensitivity of marine primary producers to ultraviolet radiation: implications for the impacts of global change. Aquatic Biology, 2014, 22, 5-23.	1.4	62
77	NITROGEN LIMITATION IN DUNALIELLA TERTIOLECTA (CHLOROPHYCEAE) LEADS TO INCREASED SUSCEPTIBILITY TO DAMAGE BY ULTRAVIOLETâ€B RADIATION BUT ALSO INCREASED REPAIR CAPACITY 1. Journal of Phycology, 2002, 38, 713-720.	2.3	60
78	Ocean urea fertilization for carbon credits poses high ecological risks. Marine Pollution Bulletin, 2008, 56, 1049-1056.	5.0	58
79	RAPID AMMONIUM―AND NITRATEâ€ŀNDUCED PERTURBATIONS TO CHL <i>a</i> FLUORESCENCE IN NITROGENâ€5TRESSED <i>DUNALIELLA TERTIOLECTA</i> (CHLOROPHYTA) ¹ . Journal of Phycology, 2003, 39, 332-342.	2.3	57
80	Modulation of photosynthesis and inorganic carbon acquisition in a marine microalga by nitrogen, iron, and light availability. Canadian Journal of Botany, 2005, 83, 917-928.	1.1	54
81	Carbon Acquisition Mechanisms of Algae: Carbon Dioxide Diffusion and Carbon Dioxide Concentrating Mechanisms. Advances in Photosynthesis and Respiration, 2003, , 225-244.	1.0	53
82	INTERACTIONS BETWEEN UV-B EXPOSURE AND PHOSPHORUS NUTRITION. I. EFFECTS ON GROWTH, PHOSPHATE UPTAKE, AND CHLOROPHYLL FLUORESCENCE1. Journal of Phycology, 2005, 41, 1204-1211.	2.3	53
83	Differential responses of growth and photosynthesis in the marine diatom <i>Chaetoceros muelleri</i> to CO ₂ and light availability. Phycologia, 2011, 50, 182-193.	1.4	52
84	Short-term variations in photosynthetic parameters of Nannochloropsis cultures grown in two types of outdoor mass cultivation systems. Aquatic Microbial Ecology, 2009, 56, 309-322.	1.8	52
85	Effects of nitrogen limitation on uptake of inorganic carbon and specific activity of ribulose-1,5-bisphosphate carboxylase/oxygenase in green microalgae. Canadian Journal of Botany, 1991, 69, 1146-1150.	1.1	51
86	Exposure times in rapid light curves affect photosynthetic parameters in algae. Aquatic Botany, 2010, 93, 185-194.	1.6	51
87	CO2 ACCUMULATION BY CHLORELLA SACCHAROPHILA (CHLOROPHYCEAE) AT LOW EXTERNAL pH: EVIDENCE FOR ACTIVE TRANSPORT OF INORGANIC CARBON AT THE CHLOROPLAST ENVELOPE1. Journal of Phycology, 1981, 17, 371-373.	2.3	51
88	Green algal molecular responses to temperature stress. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	49
89	Interactions of photosynthesis with genome size and function. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120264.	4.0	48
90	Influence of different degrees of N limitation on photosystem II performance and heterogeneity of Chlorella vulgaris. Algal Research, 2017, 26, 84-92.	4.6	48

#	Article	IF	CITATIONS
91	Cell size, photosynthesis and the package effect: an artificial selection approach. New Phytologist, 2018, 219, 449-461.	7.3	48
92	Effects of lead on two green microalgae Chlorella and Scenedesmus: photosystem II activity and heterogeneity. Algal Research, 2016, 16, 150-159.	4.6	47
93	Carbon dioxide as the exogenous inorganic carbon source forBatrachospermumandLemanea. British Phycological Journal, 1981, 16, 165-175.	1.2	46
94	Inorganic carbon uptake by an Antarctic sea-ice diatom,Nitzschia frigida. Polar Biology, 1996, 16, 95-99.	1.2	46
95	Insights into the evolution of CCMs from comparisons with other resource acquisition and assimilation processes. Physiologia Plantarum, 2008, 133, 4-14.	5.2	46
96	Photosynthetic characteristics of two <i><scp>C</scp>ylindrospermopsis raciborskii</i> strains differing in their toxicity. Journal of Phycology, 2014, 50, 292-302.	2.3	46
97	Effect of elevated temperature on the physiological responses of marine Chlorella strains from different latitudes. Journal of Applied Phycology, 2018, 30, 1-13.	2.8	45
98	Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair. PLoS ONE, 2015, 10, e0139469.	2.5	44
99	Effect of UV radiation on growth, chlorophyll fluorescence and fatty acid composition ofPhaeodactylum tricornutumandChaetoceros muelleri(Bacillariophyceae). Phycologia, 2006, 45, 605-615.	1.4	43
100	Changes in growth, chlorophyll fluorescence and fatty acid composition with culture age in batch cultures of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). Botanica Marina, 2006, 49, .	1.2	43
101	Effects of UV -B radiation on inorganic carbon acquisition by the marine microalga Dunaliella tertiolecta (Chlorophyceae). Phycologia, 2002, 41, 268-272.	1.4	40
102	INTERACTIVE EFFECTS OF PAR AND UV-B RADIATION ON PSII ELECTRON TRANSPORT IN THE MARINE ALGA DUNALIELLA TERTIOLECTA (CHLOROPHYCEAE)1. Journal of Phycology, 2003, 39, 509-512.	2.3	40
103	Oxygen Consumption: Photorespiration and Chlororespiration. Advances in Photosynthesis and Respiration, 2003, , 157-181.	1.0	40
104	INTERACTIONS BETWEEN UV-B EXPOSURE AND PHOSPHORUS NUTRITION. II. EFFECTS ON RATES OF DAMAGE AND REPAIR1. Journal of Phycology, 2005, 41, 1212-1218.	2.3	40
105	CO ₂ ACCUMULATION BY <i>CHLORELLA SACCHAROPHILA</i> (CHLOROPHYCEAE) AT LOW EXTERNAL pH: EVIDENCE FOR ACTIVE TRANSPORT OF INORGANIC CARBON AT THE CHLOROPLAST ENVELOPE ¹ . Journal of Phycology, 1981, 17, 371-373.	2.3	39
106	Ocean acidification and nutrient limitation synergistically reduce growth and photosynthetic performances of a green tide alga <i>Ulva linza</i> . Biogeosciences, 2018, 15, 3409-3420.	3.3	39
107	Distribution and spatial variation of benthic microalgal biomass in a temperate, shallow-water marine system. Aquatic Botany, 1998, 61, 39-54.	1.6	38
108	Constitutive Cylindrospermopsin Pool Size in Cylindrospermopsis raciborskii under Different Light and CO ₂ Partial Pressure Conditions. Applied and Environmental Microbiology, 2015, 81, 3069-3076.	3.1	38

JOHN BEARDALL

#	Article	IF	CITATIONS
109	Inorganic carbon acquisition byDunaliella tertiolecta(Chlorophyta) involves external carbonic anhydrase and direct HCO3â°'utilization insensitive to the anion exchange inhibitor DIDS. European Journal of Phycology, 2001, 36, 81-88.	2.0	37
110	Environmental regulation of CO2-concentrating mechanisms in microalgae. Canadian Journal of Botany, 1998, 76, 1010-1017.	1.1	36
111	Limitations on microalgal growth at very low photon fluence rates: the role of energy slippage. Photosynthesis Research, 2006, 88, 299-310.	2.9	35
112	Elevated CO2 causes changes in the photosynthetic apparatus of a toxic cyanobacterium, Cylindrospermopsis raciborskii. Journal of Plant Physiology, 2014, 171, 1091-1098.	3.5	35
113	PHOTOSYNTHETIC CHARACTERIZATION OF DEVELOPING AND MATURE AKINETES OF <i>APHANIZOMENON OVALISPORUM</i> (CYANOPROKARYOTA) ¹ . Journal of Phycology, 2007, 43, 780-788.	2.3	34
114	Catchment urbanization increases benthic microalgal biomass in streams under controlled light conditions. Aquatic Sciences, 2007, 69, 511-522.	1.5	34
115	Title is missing!. ScienceAsia, 2006, 32(s1), 001.	0.5	33
116	Effect of high CO2 concentrations on the growth and macromolecular composition of a heat- and high-light-tolerant microalga. Journal of Applied Phycology, 2016, 28, 2631-2640.	2.8	33
117	Diatom performance in a future ocean: interactions between nitrogen limitation, temperature, and CO2-induced seawater acidification. ICES Journal of Marine Science, 2018, 75, 1451-1464.	2.5	33
118	A comparison of photoautotrophic, heterotrophic, and mixotrophic growth for biomass production by the green alga <i>Scenedesmus</i> sp. (Chlorophyceae). Phycologia, 2018, 57, 309-317.	1.4	33
119	Microalgae as Potential Anti-Inflammatory Natural Product Against Human Inflammatory Skin Diseases. Frontiers in Pharmacology, 2020, 11, 1086.	3.5	33
120	TRANSPORT OF INORGANIC CARBON AND THE 'CO2 CONCENTRATING MECHANISM' IN CHLORELLA EMERSONII (CHLOROPHYCEAE)1. Journal of Phycology, 1981, 17, 134-141.	2.3	33
121	EFFECTS OF ENVIRONMENTAL FACTORS ON PHOTOSYNTHESIS PATTERNS IN <i>PHAEODACTYLUM TRICORNUTUM</i> (BACILLARIOPHYCEAE). I. EFFECT OF NITROGEN DEFICIENCY AND LIGHT INTENSITY ¹ . Journal of Phycology, 1975, 11, 424-429.	2.3	32
122	THE PATH OF CARBON IN PHOTOSYNTHESIS BY MARINE PHYTOPLANKTON ¹ ² . Journal of Phycology, 1976, 12, 409-417.	2.3	32
123	Inorganic carbon acquisition by eight species ofCaulerpa (Caulerpaceae, Chlorophyta). Phycologia, 2006, 45, 442-449.	1.4	32
124	<scp>CO₂</scp> oncentrating mechanisms in three southern hemisphere strains of <i><scp>E</scp>miliania huxleyi</i> . Journal of Phycology, 2013, 49, 670-679.	2.3	31
125	Impacts of phosphorus availability on lipid production by Chlamydomonas reinhardtii. Algal Research, 2015, 12, 191-196.	4.6	31
126	Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation. Nature Geoscience, 2017, 10, 30-35.	12.9	31

#	Article	IF	CITATIONS
127	The intrinsic permeability of biological membranes to H+: Significance for the efficiency of low rates of energy transformation. FEMS Microbiology Letters, 1981, 10, 1-5.	1.8	30
128	Internal pH of the obligate acidophile Cyanidium caldarium Geitler (Rhodophyta?). Phycologia, 1984, 23, 397-399.	1.4	30
129	STATE TRANSITIONS AND NONPHOTOCHEMICAL QUENCHING DURING A NUTRIENTâ€INDUCED FLUORESCENCE TRANSIENT IN PHOSPHORUSâ€STARVED <i>DUNALIELLA TERTIOLECTA</i> ¹ . Journal of Phycology, 2008, 44, 1204-1211.	2.3	30
130	Carbohydrate Metabolism and Respiration in Algae. Advances in Photosynthesis and Respiration, 2003, , 205-224.	1.0	29
131	INTERCOLONIAL VARIABILITY IN MACROMOLECULAR COMPOSITION IN Pâ€STARVED AND Pâ€REPLETE <i>SCENEDESMUS</i> POPULATIONS REVEALED BY INFRARED MICROSPECTROSCOPY ¹ . Journal of Phycology, 2008, 44, 1335-1339.	2.3	29
132	The impacts of a high CO2 environment on a bicarbonate user: The cyanobacterium Cylindrospermopsis raciborskii. Water Research, 2012, 46, 1430-1437.	11.3	29
133	Carbon Acquisition by Microalgae. , 2016, , 89-99.		29
134	Characterisation of Pb-induced changes and prediction of Pb exposure in microalgae using infrared spectroscopy. Aquatic Toxicology, 2017, 188, 33-42.	4.0	29
135	One hundred research questions in conservation physiology for generating actionable evidence to inform conservation policy and practice. , 2021, 9, coab009.		29
136	Carbon assimilation and losses during an ocean acidification mesocosm experiment, with special reference to algal blooms. Marine Environmental Research, 2017, 129, 229-235.	2.5	28
137	Effective electrochemical inactivation of Microcystis aeruginosa and degradation of microcystins via a novel solid polymer electrolyte sandwich. Chemical Engineering Journal, 2018, 350, 616-626.	12.7	28
138	Photosynthetic characteristics of sub-tidal benthic microalgal populations from a temperate, shallow water marine ecosystem. Aquatic Botany, 2001, 70, 9-27.	1.6	27
139	Limits to Phototrophic Growth in Dense Culture: CO2 Supply and Light. , 2013, , 91-97.		27
140	Assessment of the nutrient status of phytoplankton: a comparison between conventional bioassays and nutrient-induced fluorescence transients (NIFTs). Ecological Indicators, 2004, 4, 149-159.	6.3	26
141	Survival in low light: photosynthesis and growth of a red alga in relation to measured in situ irradiance. Journal of Phycology, 2013, 49, 867-879.	2.3	26
142	The effects of ultraviolet radiation on respiration and photosynthesis in two species of microalgae. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54, 687-696.	1.4	25
143	Photoacclimation involves modulation of the photosynthetic oxygen-evolving reactions in Dunaliella tertiolecta and Phaeodactylum tricornutum. Functional Plant Biology, 2003, 30, 301.	2.1	25
144	Reframing conservation physiology to be more inclusive, integrative, relevant and forward-looking: reflections and a horizon scan. , 2020, 8, coaa016.		25

#	ARTICLE	IF	CITATIONS
145	EFFECTS OF ENVIRONMENTAL FACTORS ON PHOTOSYNTHESIS PATTERNS IN PHAEODACTYLUM TRICORNUTUM (BACILLARIOPHYCEAE). I. EFFECT OF NITROGEN DEFICIENCY AND LIGHT INTENSITY1. Journal of Phycology, 1975, 11, 424-429.	2.3	25
146	Fatty acids of six Codium species from southeast Australia. Phytochemistry, 1998, 48, 1335-1339.	2.9	24
147	Inorganic carbon acquisition by two Antarctic macroalgae, Porphyra endiviifolium (Rhodophyta:) Tj ETQq1 1 0.7	84314 rgB 1.2	T /Oyerlock
148	Taxon-specific responses of Southern Ocean diatoms to Fe enrichment revealed by synchrotron radiation FTIR microspectroscopy. Biogeosciences, 2014, 11, 5795-5808.	3.3	24
149	Restricted use of nitrate and a strong preference for ammonium reflects the nitrogen ecophysiology of a lightâ€limited red alga. Journal of Phycology, 2015, 51, 277-287.	2.3	24
150	Snapshot prediction of carbon productivity, carbon and protein content in a Southern Ocean diatom using FTIR spectroscopy. ISME Journal, 2016, 10, 416-426.	9.8	24
151	Growth and Photosynthetic Characteristics of Toxic and Non-Toxic Strains of the Cyanobacteria Microcystis aeruginosa and Anabaena circinalis in Relation to Light. Microorganisms, 2017, 5, 45.	3.6	24
152	EFFECTS OF ENVIRONMENTAL FACTORS ON PHOTOSYNTHESIS PATTERNS IN <i>PHAEODACTYLUM TRICORNUTUM</i> (BACILLARIOPHYCEAE). II. EFFECT OF OXYGEN ¹ . Journal of Phycology, 1975, 11, 430-434.	2.3	23
153	Inorganic carbon acquisition by Hormosira banksii (Phaeophyta: Fucales) and its epiphyte Notheia anomala (Phaeophyta: Fucales). Phycologia, 1995, 34, 267-277.	1.4	23
154	Nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance in the diatom <i>Phaeodactylum tricornutum</i> . Biogeosciences, 2015, 12, 2383-2393.	3.3	23
155	Gross and net primary production: closing the gap between concepts and measurements. Aquatic Microbial Ecology, 2009, 56, 113-122.	1.8	22
156	Respiration in aquatic photolithotrophs. , 2005, , 36-46.		22
157	Viral attack exacerbates the susceptibility of a bloomâ€ f orming alga to ocean acidification. Clobal Change Biology, 2015, 21, 629-636.	9.5	21
158	Ocean acidification modulates expression of genes and physiological performance of a marine diatom. PLoS ONE, 2017, 12, e0170970.	2.5	21
159	Environmental Control of Vanadium Haloperoxidases and Halocarbon Emissions in Macroalgae. Marine Biotechnology, 2018, 20, 282-303.	2.4	21
160	Algal biophotovoltaic (BPV) device for generation of bioelectricity using Synechococcus elongatus (Cyanophyta). Journal of Applied Phycology, 2018, 30, 2981-2988.	2.8	21
161	Assessing Nutrient Status of Microalgae Using Chlorophyll a Fluorescence. , 2010, , 223-235.		20
162	Electrochemical inactivation of Cylindrospermopsis raciborskii and removal of the cyanotoxin cylindrospermopsin. Journal of Hazardous Materials, 2018, 344, 241-248.	12.4	20

#	Article	IF	CITATIONS
163	Subtropical freshwater phytoplankton show a greater response to increased temperature than to increased pCO2. Harmful Algae, 2019, 90, 101705.	4.8	20
164	Decreased motility of flagellated microalgae long-term acclimated to CO2-induced acidified waters. Nature Climate Change, 2020, 10, 561-567.	18.8	20
165	Elevated CO2 and associated seawater chemistry do not benefit a model diatom grown with increased availability of light. Aquatic Microbial Ecology, 2017, 79, 137-147.	1.8	20
166	Tonle Sap Lake, the Heart of the Lower Mekong. , 2009, , 251-272.		19
167	Assimilation of Diazotrophic Nitrogen into Pelagic Food Webs. PLoS ONE, 2013, 8, e67588.	2.5	19
168	The role of external carbonic anhydrase in photosynthesis during growth of the marine diatom <i>Chaetoceros muelleri</i> . Journal of Phycology, 2017, 53, 1159-1170.	2.3	19
169	Combination of ocean acidification and warming enhances the competitive advantage of Skeletonema costatum over a green tide alga, Ulva linza. Harmful Algae, 2019, 85, 101698.	4.8	19
170	EFFECTS OF ENVIRONMENTAL FACTORS ON PHOTOSYNTHESIS PATTERNS IN PHAEODACTYLUM TRICORNUTUM (BACILLARIOPHYCEAE). II. EFFECT OF OXYGEN1. Journal of Phycology, 1975, 11, 430-434.	2.3	19
171	Observations on the surface water characteristics in the western Irish Sea: July 1977. Estuarine, Coastal and Shelf Science, 1982, 14, 589-598.	2.1	18
172	Effect of elevated carbon dioxide and nitric oxide on the physiological responses of two green algae, Asterarcys quadricellulare and Chlorella sorokiniana. Journal of Applied Phycology, 2020, 32, 189-204.	2.8	18
173	Influence of global environmental Change on plankton. Journal of Plankton Research, 2021, 43, 779-800.	1.8	18
174	A seasonal study of the distributions of surface state variables in Liverpool Bay. III. An offshore front. Journal of Experimental Marine Biology and Ecology, 1982, 58, 19-31.	1.5	17
175	Photoacclimation in Dunaliella tertiolecta reveals a unique NPQ pattern upon exposure to irradiance. Photosynthesis Research, 2011, 110, 123-137.	2.9	17
176	Calcification and ocean acidification: new insights from the coccolithophore <i>Emiliania huxleyi</i> . New Phytologist, 2013, 199, 1-3.	7.3	17
177	Contrasting ecotoxicity effects of zinc on growth and photosynthesis in a neutrophilic alga (Chlamydomonas reinhardtii) and an extremophilic alga (Cyanidium caldarium). Chemosphere, 2014, 112, 402-411.	8.2	17
178	Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress. Journal of Oceanology and Limnology, 2018, 36, 1266-1279.	1.3	17
179	Ultraviolet radiation has no effect on respiratory oxygen consumption or enhanced post-illumination respiration in three species of microalgae. Journal of Photochemistry and Photobiology B: Biology, 2002, 68, 109-116.	3.8	16
180	INTERACTIONS AMONG PHOSPHATE UPTAKE, PHOTOSYNTHESIS, AND CHLOROPHYLL FLUORESCENCE IN NUTRIENTâ€LIMITED CULTURES OF THE CHLOROPHYTE MICROALGA <i>DUNALIELLA TERTIOLECTA</i> ¹ . Journal of Phycology, 2008, 44, 662-669.	2.3	16

#	Article	IF	CITATIONS
181	A red tide alga grown under ocean acidification upregulates its tolerance to lower pH by increasing its photophysiological functions. Biogeosciences, 2014, 11, 4829-4837.	3.3	16
182	Response of Growth and Photosynthesis of <i>Emiliania huxleyi</i> to Visible and <scp>UV</scp> Irradiances under Different Light Regimes. Photochemistry and Photobiology, 2015, 91, 343-349.	2.5	16
183	Cyanobacteria vs green algae: which group has the edge?. Journal of Experimental Botany, 2017, 68, 3697-3699.	4.8	16
184	Time for Multiple Extraction Methods in Proteomics? A Comparison of Three Protein Extraction Methods in the Eustigmatophyte Alga <i>Microchloropsis gaditana</i> CCMP526. OMICS A Journal of Integrative Biology, 2017, 21, 678-683.	2.0	16
185	Light acclimation and pH perturbations affect photosynthetic performance in Chlorella mass culture. Aquatic Biology, 2014, 22, 95-110.	1.4	16
186	Enhancement of diatom growth and phytoplankton productivity with reduced O2 availability is moderated by rising CO2. Communications Biology, 2022, 5, 54.	4.4	16
187	A seasonal study of the distribution of surface state variables in Liverpool Bay. v. summer. Journal of Experimental Marine Biology and Ecology, 1983, 73, 151-165.	1.5	15
188	Photo-acclimation to low light—Changes from growth to antenna size in the cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae, 2015, 46, 11-17.	4.8	15
189	A perspective on the current status of approaches for early detection of microalgal grazing. Journal of Applied Phycology, 2020, 32, 3723-3733.	2.8	15
190	A seasonal study of the distribution of surface state variables in Liverpool Bay. IV. The spring bloom. Journal of Experimental Marine Biology and Ecology, 1982, 62, 93-115.	1.5	14
191	The ecophysiology of inorganic carbon assimilation by Durvillaea potatorum (Durvillaeales,) Tj ETQq1 1 0.78431	4 rgBT /Ον 4.4	erlock 10 Tf
192	Characterising nutrient-induced fluorescence transients (NIFTs) in nitrogen-stressed Chlorella emersonii (Chlorophyta). Phycologia, 2007, 46, 503-512.	1.4	14
193	Fluorescence microscopy reveals variations in cellular composition during formation of akinetes in the cyanobacterium <i>Aphanizomenon ovalisporum</i> . European Journal of Phycology, 2009, 44, 309-317.	2.0	14
194	Environmental influences on akinete germination and development in Nodularia spumigena (Cyanobacteriaceae), isolated from the Gippsland Lakes, Victoria, Australia. Hydrobiologia, 2010, 649, 239-247.	2.0	14
195	Impacts of nitrogen limitation on the sinking rate of the coccolithophorid <i>Emiliania huxleyi</i> (Prymnesiophyceae). Phycologia, 2013, 52, 288-294.	1.4	14
196	Capacity of a temperate intertidal seagrass species to tolerate changing environmental conditions: Significance of light and tidal exposure. Ecological Indicators, 2017, 81, 578-586.	6.3	14
197	Consequences of the genotypic loss of mitochondrial Complex I in dinoflagellates and of phenotypic regulation of Complex I content in other photosynthetic organisms. Journal of Experimental Botany, 2017, 68, 2683-2692.	4.8	14
198	Effect of UV radiation on the expulsion of Symbiodinium from the coral Pocillopora damicornis. Journal of Photochemistry and Photobiology B: Biology, 2017, 166, 12-17.	3.8	14

JOHN BEARDALL

#	Article	IF	CITATIONS
199	Differential photosynthetic responses of marine planktonic and benthic diatoms to ultraviolet radiation under various temperature regimes. Biogeosciences, 2017, 14, 5029-5037.	3.3	14
200	Cell size influences inorganic carbon acquisition in artificially selected phytoplankton. New Phytologist, 2021, 229, 2647-2659.	7.3	14
201	Iron, nitrogen, phosphorus and zinc cycling and consequences for primary productivity in the oceans. , 0, , 247-272.		13
202	Spatio-temporal variability in the photosynthetic characteristics of Zostera tasmanica measured by PAM. Aquatic Botany, 2006, 85, 21-28.	1.6	13
203	Probing the Influence of the Environment on Microalgae Using Infrared and Raman Spectroscopy. ACS Symposium Series, 2007, , 85-106.	0.5	13
204	Dark Respiration and Organic Carbon Loss. , 2016, , 129-140.		13
205	Consequences of altered temperature regimes for emerging freshwater invertebrates. Aquatic Sciences, 2017, 79, 265-276.	1.5	13
206	Carbon acquisition characteristics of six microalgal species isolated from a subtropical reservoir: potential implications for species succession. Journal of Phycology, 2018, 54, 599-607.	2.3	13
207	Energizing the plasmalemma of marine photosynthetic organisms: the role of primary active transport. Journal of the Marine Biological Association of the United Kingdom, 2020, 100, 333-346.	0.8	13
208	A reduction in metabolism explains the tradeoffs associated with the longâ€ŧerm adaptation of phytoplankton to high CO ₂ concentrations. New Phytologist, 2022, 233, 2155-2167.	7.3	13
209	Modification of fatty acid composition in halophilic antarctic microalgae. Phytochemistry, 1998, 49, 1249-1252.	2.9	12
210	Discrimination of cyanobacterial strains isolated from saline soils in Nakhon Ratchasima, Thailand using attenuated total reflectance FTIR spectroscopy. Journal of Biophotonics, 2010, 3, 534-541.	2.3	12
211	Incident Ultraviolet Irradiances Influence Physiology, Development and Settlement of Larva in the Coral <i>Pocillopora damicornis</i> . Photochemistry and Photobiology, 2016, 92, 293-300.	2.5	12
212	Photosynthetic physiology of <i>Scenedesmus</i> sp. (Chlorophyceae) under photoautotrophic and molasses-based heterotrophic and mixotrophic conditions. Phycologia, 2017, 56, 666-674.	1.4	12
213	Variation in cell size of the diatom Coscinodiscus granii influences photosynthetic performance and growth. Photosynthesis Research, 2018, 137, 41-52.	2.9	12
214	A metabolomic approach to investigate effects of ocean acidification on a polar microalga Chlorella sp Aquatic Toxicology, 2019, 217, 105349.	4.0	12
215	The lower limit of photon fluence rate for phototrophic growth: the significance of 'slippage' reactions. Plant, Cell and Environment, 1982, 5, 117-124.	5.7	12
216	A Novel Method for Extracting Protoplasts from Large Brown Algae. Journal of Experimental Botany, 1993, 44, 1587-1593.	4.8	11

#	Article	IF	CITATIONS
217	Potential triggers of akinete differentiation in Nodularia spumigena (Cyanobacteriaceae) isolated from Australia. Hydrobiologia, 2011, 671, 165-180.	2.0	11
218	CO2 acquisition in Chlamydomonas acidophila is influenced mainly by CO2, not phosphorus, availability. Photosynthesis Research, 2014, 121, 213-221.	2.9	11
219	Nitrogen Limitation Decreases the Repair Capacity and Enhances Photoinhibition of Photosystem II in a Diatom. Photochemistry and Photobiology, 2021, 97, 745-752.	2.5	11
220	Environmental controls on the nitrogen-fixing cyanobacterium Nodularia spumigena in a temperate lagoon system in SE Australia. Marine Ecology - Progress Series, 2012, 461, 47-57.	1.9	11
221	State-transitions facilitate robust quantum yields and cause an over-estimation of electron transport in Dunaliella tertiolecta cells held at the CO2 compensation point and re-supplied with DIC. Photosynthesis Research, 2014, 119, 257-272.	2.9	10
222	Electron transport kinetics in the diazotrophic cyanobacterium Trichodesmium spp. grown across a range of light levels. Photosynthesis Research, 2015, 124, 45-56.	2.9	10
223	Altritol synthesis by Notheia anomala. Phytochemistry, 2001, 58, 389-394.	2.9	9
224	Photosynthetic characterization of two Nannochloropsis species and its relevance to outdoor cultivation. Journal of Applied Phycology, 2020, 32, 909-922.	2.8	9
225	Inorganic carbon uptake by an Antarctic sea-ice diatom, Nitzschia frigida. Polar Biology, 1996, 16, 95-99.	1.2	9
226	Non-photochemical quenching, a non-invasive probe for monitoring microalgal grazing: an early indicator of predation by <i>Oxyrrhis marina</i> and <i>Euplotes</i> sp Applied Phycology, 2020, 1, 20-31.	1.3	9
227	Physiological Responses of a Model Marine Diatom to Fast pH Changes: Special Implications of Coastal Water Acidification. PLoS ONE, 2015, 10, e0141163.	2.5	9
228	Evidence for a CO2 concentrating mechanism in Botrydiopsis (Tribophyceae). Phycologia, 1984, 23, 511-513.	1.4	8
229	The effects of copper and zinc on biomass and taxonomic composition of algal periphyton communities from the River Gharasou, Western Iran. Oceanological and Hydrobiological Studies, 2009, 38, 3-14.	0.7	8
230	Blooms of cyanobacteria in a temperate Australian lagoon system post and prior to European settlement. Biogeosciences, 2016, 13, 3677-3686.	3.3	8
231	The role of bioirrigation in sediment phosphorus dynamics and blooms of toxic cyanobacteria in a temperate lagoon. Environmental Modelling and Software, 2016, 86, 277-304.	4.5	8
232	Nutrient induced fluorescence transients (NIFTs) provide a rapid measure of P and C (co-)limitation in a green alga. European Journal of Phycology, 2016, 51, 47-58.	2.0	8
233	Temporal acclimation of Microchloropsis gaditana CCMP526 in response to hypersalinity. Bioresource Technology, 2018, 254, 23-30.	9.6	8
234	Photosynthetic and growth responses of <i>Nannochloropsis oculata</i> (Eustigmatophyceae) during batch cultures in relation to light intensity. Phycologia, 2018, 57, 492-502.	1.4	8

#	Article	IF	CITATIONS
235	High copper and UVR synergistically reduce the photochemical activity in the marine diatom Skeletonema costatum. Journal of Photochemistry and Photobiology B: Biology, 2019, 192, 97-102.	3.8	8
236	Physiological and biochemical responses of Thalassiosira weissflogii (diatom) to seawater acidification and alkalization. ICES Journal of Marine Science, 2019, 76, 1850-1859.	2.5	8
237	Non-photochemical quenching, a non-invasive probe for monitoring microalgal grazing: influence of grazing-mediated total ammonia-nitrogen. Applied Phycology, 2020, 1, 32-43.	1.3	8
238	Acquisition of Inorganic Carbon byÂMicroalgae and Cyanobacteria. , 2020, , 151-168.		8
239	Impact of inhibitors of amino acid, protein, and RNA synthesis on C allocation in the diatom Chaetoceros muellerii: a FTIR approach. Algae, 2017, 32, 161-170.	2.3	8
240	Lower Salinity Leads to Improved Physiological Performance in the Coccolithophorid Emiliania huxleyi, Which Partly Ameliorates the Effects of Ocean Acidification. Frontiers in Marine Science, 2020, 7, .	2.5	7
241	Structural and Biochemical Features of Carbon Acquisition in Algae. Advances in Photosynthesis and Respiration, 2020, , 141-160.	1.0	7
242	Light-Driven Oxygen Consumption in the Water-Water Cycles and Photorespiration, and Light Stimulated Mitochondrial Respiration. Advances in Photosynthesis and Respiration, 2020, , 161-178.	1.0	7
243	Moving beyond methods: the need for a diverse programme in climate change research. Ecology Letters, 2014, 17, 125.	6.4	6
244	Elevated CO2 concentration alleviates UVR-induced inhibition of photosynthetic light reactions and growth in an intertidal red macroalga. Journal of Photochemistry and Photobiology B: Biology, 2020, 213, 112074.	3.8	6
245	Differential Responses of Growth and Photochemical Performance of Marine Diatoms to Ocean Warming and High Light Irradiance. Photochemistry and Photobiology, 2020, 96, 1074-1082.	2.5	6
246	FTIR combined with chemometric tools — a potential approach for early screening of grazers in microalgal cultures. Journal of Applied Phycology, 2021, 33, 2709-2722.	2.8	6
247	Elevated pCO 2 enhances under light but reduces in darkness the growth rate of a diatom, with implications for the fate of phytoplankton below the photic zone. Limnology and Oceanography, 2021, 66, 3630.	3.1	6
248	Evolution of Phytoplankton in Relation to Their Physiological Traits. Journal of Marine Science and Engineering, 2022, 10, 194.	2.6	6
249	The lower limit of photon fluence rate for phototrophic growth: the significance of †slippage' reactions. Plant, Cell and Environment, 1982, 5, 117-124.	5.7	5
250	Intraâ€strain Variability in the Effects of Temperature on UVâ€B Sensitivity of Cyanobacteria. Photochemistry and Photobiology, 2019, 95, 306-314.	2.5	5
251	Elevated co ₂ has Differential Effects on Five Species of Microalgae from a Subtropical Freshwater Lake: Possible Implications for Phytoplankton Species Composition. Journal of Phycology, 2021, 57, 324-334.	2.3	5
252	Diurnally fluctuating <i>p</i> CO2 enhances growth of a coastal strain of <i>Emiliania huxleyi</i> under future-projected ocean acidification conditions. ICES Journal of Marine Science, 2021, 78, 1301-1310.	2.5	5

#	Article	IF	CITATIONS
253	The effects of wind, phytoplankton and density discontinuities upon ammonia distributions in Liverpool Bay. Estuarine, Coastal and Shelf Science, 1985, 20, 463-475.	2.1	4
254	Inorganic carbon acquisition by Dunaliella tertiolecta (Chlorophyta) involves external carbonic anhydrase and direct HCO3 - utilization insensitive to the anion exchange inhibitor DIDS. European Journal of Phycology, 2001, 36, 81-88.	2.0	4
255	Chlorophyll fluorescence and ecophysiology: seeing red?. New Phytologist, 2006, 169, 449-451.	7.3	4
256	UV-A induced delayed development in the larvae of coral Seriatopora caliendrum. Journal of Photochemistry and Photobiology B: Biology, 2017, 167, 249-255.	3.8	4
257	Calcification Moderates the Increased Susceptibility to <scp>UV</scp> Radiation of the Coccolithophorid <i>Gephryocapsa oceanica</i> Grown under Elevated <scp>CO</scp> ₂ Concentration: Evidence Based on Calcified and Nonâ€calcified Cells. Photochemistry and Photobiology. 2018. 94. 994-1002.	2.5	4
258	Potential control of cyanobacterial blooms by using a floatingâ€mobile electrochemical system. Journal of Chemical Technology and Biotechnology, 2019, 94, 582-589.	3.2	4
259	What is the efficiency of electro-generation of chlorine with a solid polymer electrolyte assembly?. Chemical Engineering Journal, 2019, 364, 370-375.	12.7	4
260	Photosynthetic response and DNA mutation of tropical, temperate and polar Chlorella under short-term UVR stress. Polar Science, 2019, 20, 35-44.	1.2	4
261	The effect of CO2 concentration on DMSP production in Gephyrocapsa oceanica (Isochrysidales,) Tj ETQq1 1 0.7	784314 rg 1.4	BT /Overlock
262	Cell size has gene expression and biophysical consequences for cellular function. Perspectives in Phycology, 2019, 6, 81-94.	1.9	4
263	The effects of ultraviolet radiation on respiration and photosynthesis in two species of microalgae. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54, 687-696.	1.4	4
264	Using macroalgae to address UN Sustainable Development goals through CO ₂ remediation and improvement of the aquaculture environment. Applied Phycology, 2022, 3, 360-367.	1.3	4
265	Relative effects of local and landscape factors on wetland algal biomass over a salinity gradient. Aquatic Sciences, 2010, 72, 191-202.	1.5	3
266	Algal Photosynthesis and Physiology. , 2016, , 1-19.		3
267	Use of a chemical inhibitor as an alternative approach to enhance lipid production in <i>Chlamydomonas reinhardtii</i> (Chlorophyceae). Phycologia, 2017, 56, 159-166.	1.4	3
268	Effects of Temperature on The UVâ€B Sensitivity of Toxic Cyanobacteria <i>Microcystis aeruginosa</i> CS558 and <i>Anabaena circinalis</i> CS537. Photochemistry and Photobiology, 2020, 96, 936-940.	2.5	3
269	Increased CO2 Relevant to Future Ocean Acidification Alleviates the Sensitivity of a Red Macroalgae to Solar Ultraviolet Irradiance by Modulating the Synergy Between Photosystems II and I. Frontiers in Plant Science, 2021, 12, 726538.	3.6	3
270	Acquisition and Metabolism of Inorganic Nutrients by Dunaliella. , 2009, , 173-187.		3

#	Article	IF	CITATIONS
271	Commentary: Evaluating the Role of Seagrass in Cenozoic CO2 Variations. Frontiers in Environmental Science, 2017, 5, .	3.3	2
272	Ok Tedi copper mine, Papua New Guinea, stimulates algal growth in the Fly River. Sustainable Water Resources Management, 2019, 5, 425-437.	2.1	2
273	Data-Independent-Acquisition-Based Proteomic Approach towards Understanding the Acclimation Strategy of Oleaginous Microalga <i>Microchloropsis gaditana</i> CCMP526 in Hypersaline Conditions. ACS Omega, 2021, 6, 22151-22164.	3.5	2
274	Infrared Spectroscopy and Multivariate Statistics applied to Medical and Biological Problems. , 1999, , 475-478.		2
275	Metal Pollution in Water: Toxicity, Tolerance and Use of Algae as a Potential Remediation Solution. Grand Challenges in Biology and Biotechnology, 2019, , 471-500.	2.4	2
276	Carbon Dioxide vs. Bicarbonate Utilisation. , 2021, , 153-164.		2
277	The inhibitory effects of the antifouling compound Irgarol 1051 on the marine diatom Skeletonema sp. across a broad range of photosynthetically active radiation. Environmental Science and Pollution Research, 2021, 28, 48535-48542.	5.3	1
278	Physiological change in microalgae monitored using FT-IR spectroscopy. , 1999, , 449-450.		1
279	Opportunities for, and limitations on, the functioning of very small cells, illustrated by the Chlorophyta and charophycean Streptophyta. Perspectives in Phycology, 2018, 5, 1-12.	1.9	1
280	Oxidative and anti-oxidative responses to metal toxicity in an extremophilic alga (<i>Cyanidium) Tj ETQq0 0 0 rgE 513-523.</i>	3T /Overlo 1.4	ck 10 Tf 50 3 1
281	Cyanobacteria-Dominated Phytoplankton in the Oligotrophic South China Sea Maintain Photosynthetic Potential Despite Diurnal Photoinactivation of PSII. Frontiers in Marine Science, 2021, 8, .	2.5	1
282	The stability of pH and dissolved inorganic carbon (DIC) in microalgal culture media. Phycologia, 2022, 61, 97-103.	1.4	1
283	Profiling of grazed cultures of the chlorophyte alga <i>Dunaliella tertiolecta</i> using an untargeted LC–MS approach. Journal of Phycology, 2022, 58, 568-581.	2.3	1
284	A seasonal study of the distribution of surface state variables in Liverpool Bay. VI. Autumn. Journal of Experimental Marine Biology and Ecology, 1984, 77, 69-79.	1.5	0
285	AFestschriftin honour of Professor John A. Raven. Plant Ecology and Diversity, 2009, 2, 107-110.	2.4	0
286	Physiological and biochemical responses of Thalassiosira punctigera to nitrate limitation. Diatom Research, 2018, 33, 135-143.	1.2	0
287	Fluorescence Measurement Techniques. , 2021, , 231-238.		0

Basic Concepts and Key Parameters of Chlorophyll Fluorescence. , 2021, , 221-229.