Shiwei Duan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1284355/publications.pdf

Version: 2024-02-01

257 papers 7,533 citations

41 h-index 93651 72 g-index

262 all docs 262 docs citations

262 times ranked 13661 citing authors

#	Article	IF	CITATIONS
1	LINC00662: A new oncogenic lncRNA with great potential. Journal of Cellular Physiology, 2022, 237, 1105-1118.	2.0	9
2	miR-1269a and miR-1269b: Emerging Carcinogenic Genes of the miR-1269 Family. Frontiers in Cell and Developmental Biology, 2022, 10, 809132.	1.8	7
3	LINC00520: A Potential Diagnostic and Prognostic Biomarker in Cancer. Frontiers in Immunology, 2022, 13, 845418.	2.2	6
4	miR-1908 Dysregulation in Human Cancers. Frontiers in Oncology, 2022, 12, 857743.	1.3	9
5	miR-874: An Important Regulator in Human Diseases. Frontiers in Cell and Developmental Biology, 2022, 10, 784968.	1.8	4
6	Dysregulation of miR-411 in cancer: Causative factor for pathogenesis, diagnosis and prognosis. Biomedicine and Pharmacotherapy, 2022, 149, 112896.	2.5	7
7	LINC00963: A potential cancer diagnostic and therapeutic target. Biomedicine and Pharmacotherapy, 2022, 150, 113019.	2.5	15
8	PRKCDBP Methylation is a Potential and Promising Candidate Biomarker for Non-small Cell Lung Cancer Chinese Journal of Lung Cancer, 2022, 25, 78-85.	0.7	0
9	LINC00665: An Emerging Biomarker for Cancer Diagnostics and Therapeutics. Cells, 2022, 11, 1540.	1.8	15
10	Emerging role of LINC00461 in cancer. Biomedicine and Pharmacotherapy, 2022, 152, 113239.	2.5	11
11	The role of miRâ€543 in human cancerous and noncancerous diseases. Journal of Cellular Physiology, 2021, 236, 15-26.	2.0	13
12	Alterations of 5-hydroxymethylcytosines in circulating cell-free DNA reflect retinopathy in type 2 diabetes. Genomics, 2021, 113, 79-87.	1.3	12
13	IL10 hypomethylation is associated with the risk of gastric cancer. Oncology Letters, 2021, 21, 241.	0.8	11
14	Molecular Mechanisms of miR-1271 Dysregulation in Human Cancer. DNA and Cell Biology, 2021, 40, 740-747.	0.9	1
15	MicroRNA‑490‑3p and ‑490‑5p in carcinogenesis: Separate or the same goal? (Review). Oncology Letters 2021, 22, 678.	' 0.8	5
16	miR-940 is a new biomarker with tumor diagnostic and prognostic value. Molecular Therapy - Nucleic Acids, 2021, 25, 53-66.	2.3	18
17	Dysfunction of miRâ€802 in tumors. Journal of Clinical Laboratory Analysis, 2021, 35, e23989.	0.9	9
18	The tumorigenic function of LINC00858 in cancer. Biomedicine and Pharmacotherapy, 2021, 143, 112235.	2.5	9

#	Article	IF	CITATIONS
19	MiR-873-5p: A Potential Molecular Marker for Cancer Diagnosis and Prognosis. Frontiers in Oncology, 2021, 11, 743701.	1.3	14
20	Association of COMT Polymorphisms with Multiple Physical Activity-Related Injuries among University Students in China. International Journal of Environmental Research and Public Health, 2021, 18, 10828.	1.2	0
21	Circulating miR-3197 and miR-2116-5p as novel biomarkers for diabetic retinopathy. Clinica Chimica Acta, 2020, 501, 147-153.	0.5	31
22	GPX3methylation is associated with hematologic improvement in low-risk myelodysplastic syndrome patients treated with Pai-Neng-Da. Journal of International Medical Research, 2020, 48, 030006052095689.	0.4	0
23	miR-552: an important post-transcriptional regulator that affects human cancer. Journal of Cancer, 2020, 11, 6226-6233.	1.2	13
24	The paradoxical roles of miR-4295 in human cancer: Implications in pathogenesis and personalized medicine. Genes and Diseases, 2020, , .	1.5	4
25	The Role of Long Non-Coding RNA NNT-AS1 in Neoplastic Disease. Cancers, 2020, 12, 3086.	1.7	16
26	The values of AHCY and CBS promoter methylation on the diagnosis of cerebral infarction in Chinese Han population. BMC Medical Genomics, 2020, 13, 163.	0.7	3
27	Epigenetic Changes Associated With Interleukin-10. Frontiers in Immunology, 2020, 11, 1105.	2.2	21
28	The biological role of arachidonic acid 12-lipoxygenase (ALOX12) in various human diseases. Biomedicine and Pharmacotherapy, 2020, 129, 110354.	2.5	61
29	miR-655: A promising regulator with therapeutic potential. Gene, 2020, 757, 144932.	1.0	4
30	LEPR hypomethylation is significantly associated with gastric cancer in males. Experimental and Molecular Pathology, 2020, 116, 104493.	0.9	57
31	The Processing, Gene Regulation, Biological Functions, and Clinical Relevance of N4-Acetylcytidine on RNA: A Systematic Review. Molecular Therapy - Nucleic Acids, 2020, 20, 13-24.	2.3	123
32	Association of human serotonin receptor 4 promoter methylation with autism spectrum disorder. Medicine (United States), 2020, 99, e18838.	0.4	11
33	Complete genome sequence of high-yield strain S. lincolnensis B48 and identification of crucial mutations contributing to lincomycin overproduction. Synthetic and Systems Biotechnology, 2020, 5, 37-48.	1.8	18
34	A male-specific association between AGTR1 hypermethylation and coronary heart disease. Bosnian Journal of Basic Medical Sciences, 2020, 20, 31-36.	0.6	5
35	Genetic regulatory subnetworks and key regulating genes in rat hippocampus perturbed by prenatal malnutrition: implications for major brain disorders. Aging, 2020, 12, 8434-8458.	1.4	63
36	PTPN11 hypomethylation is associated with gastric cancer progression. Oncology Letters, 2020, 19, 1693-1700.	0.8	2

#	Article	IF	CITATIONS
37	Hypermethylation of tumor necrosis factor decoy receptor gene in nonâ€'small lung cancer. Oncology Letters, 2020, 20, 155-164.	0.8	2
38	FANCF hypomethylation is associated with colorectal cancer in Han Chinese. Turkish Journal of Gastroenterology, 2020, 31, 558-565.	0.4	0
39	FANCF hypomethylation is associated with colorectal cancer in Han Chinese. Turkish Journal of Gastroenterology, 2020, 31, 558-565.	0.4	0
40	Elevated methylation of cyclin dependent kinase inhibitor 2B contributes to the risk of coronary heart disease in women. Experimental and Therapeutic Medicine, 2019, 17, 205-213.	0.8	4
41	Significant association of EED promoter hypomethylation with colorectal cancer. Oncology Letters, 2019, 18, 1564-1570.	0.8	2
42	Significant association between GPR50 hypomethylation and AD in males. Molecular Medicine Reports, 2019, 20, 1085-1092.	1.1	4
43	Unintentional injuries and violence among adolescents aged 12–15 years in 68 low-income and middle-income countries: a secondary analysis of data from the Global School-Based Student Health Survey. The Lancet Child and Adolescent Health, 2019, 3, 616-626.	2.7	50
44	National Trends in American Heart Association Revised Life's Simple 7 Metrics Associated With Risk of Mortality Among US Adults. JAMA Network Open, 2019, 2, e1913131.	2.8	73
45	Trends in Self-perceived Weight Status, Weight Loss Attempts, and Weight Loss Strategies Among Adults in the United States, 1999-2016. JAMA Network Open, 2019, 2, e1915219.	2.8	35
46	Association Between RASSF2 Methylation and Gastric Cancer: A PRISMA-Compliant Systematic Review and Meta-Analysis. DNA and Cell Biology, 2019, 38, 1147-1154.	0.9	1
47	The gene mutations and subtelomeric DNA methylation in immunodeficiency, centromeric instability and facial anomalies syndrome. Autoimmunity, 2019, 52, 192-198.	1.2	4
48	Gout in males: a possible role for COMT hypomethylation. Clinical Rheumatology, 2019, 38, 2865-2871.	1.0	3
49	Differences in Leukocyte Telomere Length between Coronary Heart Disease and Normal Population: A Multipopulation Meta-Analysis. BioMed Research International, 2019, 2019, 1-9.	0.9	20
50	Association between GPX3 promoter methylation and malignant tumors: A meta-analysis. Pathology Research and Practice, 2019, 215, 152443.	1.0	10
51	Epidemiology of physical activityâ€related injuries in Chinese university students. Scandinavian Journal of Medicine and Science in Sports, 2019, 29, 1331-1339.	1.3	5
52	Association of multiple candidate genes with mild cognitive impairment in an elderly Chinese Uygur population in Xinjiang. Psychogeriatrics, 2019, 19, 574-583.	0.6	5
53	<i>GPX3</i> hypermethylation in gastric cancer and its prognostic value in patients aged over 60. Future Oncology, 2019, 15, 1279-1289.	1.1	21
54	Association of BAX hypermethylation with coronary heart disease is specific to individuals aged over 70. Medicine (United States), 2019, 98, e14130.	0.4	3

#	Article	IF	CITATIONS
55	Significant association of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) rs3846662 and sirtuin 1 (SIRT1) rs7895833 and apolipoprotein E (APOE) hypermethylation with mild cognitive impairment (MCI). Medicine (United States), 2019, 98, e16405.	0.4	3
56	The telomere length of peripheral blood cells is associated with the risk of ischemic stroke in Han population of northern China. Medicine (United States), 2019, 98, e14593.	0.4	4
57	APOE hypermethylation is significantly associated with coronary heart disease in males. Gene, 2019, 689, 84-89.	1.0	19
58	Serine hydroxymethyltransferase 1 promoter hypermethylation increases the risk of essential hypertension. Journal of Clinical Laboratory Analysis, 2019, 33, e22712.	0.9	7
59	Significant association between KDM1A promoter hypomethylation and colorectal cancer in Han Chinese. Pathology Research and Practice, 2019, 215, 532-538.	1.0	2
60	Clinically useful flow cytometry approach to identify immunophenotype in acute leukemia. Journal of International Medical Research, 2019, 47, 1483-1492.	0.4	6
61	Hypermethylated Promoters of Secreted Frizzled-Related Protein Genes are Associated with Colorectal Cancer. Pathology and Oncology Research, 2019, 25, 567-575.	0.9	14
62	Role of MicroRNAs in the Development of Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease. Anatomical Record, 2019, 302, 193-200.	0.8	5
63	Co-expression network analysis identified hub genes critical to triglyceride and free fatty acid metabolism as key regulators of age-related vascular dysfunction in mice. Aging, 2019, 11, 7620-7638.	1.4	56
64	PON1 Hypermethylation and PON3 Hypomethylation are Associated with Risk of Cerebral Infarction. Current Neurovascular Research, 2019, 16, 115-122.	0.4	11
65	Dopamine receptor D4 promoter hypermethylation increases the risk of drug addiction. Experimental and Therapeutic Medicine, 2018, 15, 2128-2133.	0.8	7
66	Aberrant methylation of mutL homolog 1 is associated with increased risk of nonâ€small cell lung cancer. Journal of Clinical Laboratory Analysis, 2018, 32, e22370.	0.9	6
67	Association of HOXA9 Promoter Hypomethylation With Colorectal Cancer. SSRN Electronic Journal, 2018, , .	0.4	0
68	Elevated methylation of OPRM1 and OPRL1 genes in Alzheimer's disease. Molecular Medicine Reports, 2018, 18, 4297-4302.	1.1	18
69	Endothelial PAS domain protein 1 gene hypomethylation is associated with colorectal cancer in Han Chinese. Experimental and Therapeutic Medicine, 2018, 16, 4983-4990.	0.8	6
70	Association of OGG1 and DLST promoter methylation with Alzheimer's disease in Xinjiang population. Experimental and Therapeutic Medicine, 2018, 16, 3135-3142.	0.8	2
71	Hypermethylation of the \hat{l}^21 opioid receptor promoter in Chinese heroin and methamphetamine addicts. Experimental and Therapeutic Medicine, 2018, 16, 2392-2398.	0.8	1
72	Hypermethylation of protocadherin \hat{I}^3 subfamily A12 and solute carrier family 19 A 1 promoters contributes to the occurrence and metastasis of colorectal cancer. Oncology Letters, 2018, 15, 8215-8222.	0.8	0

#	Article	IF	Citations
73	<i>SMYD3</i> promoter hypomethylation is associated with the risk of colorectal cancer. Future Oncology, 2018, 14, 1825-1834.	1.1	15
74	Significant association of <i><scp>PRMT</scp>6</i> hypomethylation with colorectal cancer. Journal of Clinical Laboratory Analysis, 2018, 32, e22590.	0.9	10
75	Hypermethylation of MDFI promoter with NSCLC is specific for females, nonâ€'smokers and people younger than 65. Oncology Letters, 2018, 15, 9017-9024.	0.8	6
76	APOE hypermethylation is associated with autism spectrum disorder in a Chinese population. Experimental and Therapeutic Medicine, 2018, 15, 4749-4754.	0.8	8
77	Diagnostic value of RASSF1A hypermethylation in colorectal cancer: a meta-analysis. Pathology Research and Practice, 2018, 214, 1572-1578.	1.0	8
78	The Alteration of Subtelomeric DNA Methylation in Aging-Related Diseases. Frontiers in Genetics, 2018, 9, 697.	1.1	20
79	Study of the association of 17 lipid-related gene polymorphisms with coronary heart disease. Anatolian Journal of Cardiology, 2018, 19, 360-367.	0.5	7
80	Diagnostic value of <i>WIF1</i> methylation for colorectal cancer: a meta-analysis. Oncotarget, 2018, 9, 5378-5386.	0.8	16
81	<i>TNFRSF10C</i> methylation is a new epigenetic biomarker for colorectal cancer. PeerJ, 2018, 6, e5336.	0.9	12
82	Impact of gender and age on the association of the BUD13-ZNF259 rs964184 polymorphism with coronary heart disease. Anatolian Journal of Cardiology, 2018, 19, 42-49.	0.5	5
83	Association between the methylation of six apoptosis‑associated genes with autism spectrum disorder. Molecular Medicine Reports, 2018, 18, 4629-4634.	1.1	1
84	Potatoes Consumption and Risk of Type 2 Diabetes: A Meta-analysis. Iranian Journal of Public Health, 2018, 47, 1627-1635.	0.3	9
85	<i>FOXF2</i> promoter methylation is associated with prognosis in esophageal squamous cell carcinoma. Tumor Biology, 2017, 39, 101042831769223.	0.8	14
86	Prognostic value of MLH1 promoter methylation in male patients with esophageal squamous cell carcinoma. Oncology Letters, 2017, 13, 2745-2750.	0.8	13
87	Determinants of hyperhomocysteinemia in healthy and hypertensive subjects: A population-based study and systematic review. Clinical Nutrition, 2017, 36, 1215-1230.	2.3	34
88	Catechol-O-methyltransferase gene promoter methylation as a peripheral biomarker in male schizophrenia. European Psychiatry, 2017, 44, 39-46.	0.1	27
89	Chemotherapy-induced hypomethylation of N-myc downstream-regulated gene 4 in the bone marrow of patients with acute myeloid leukemia. Oncology Letters, 2017, 13, 3309-3313.	0.8	1
90	AGTR1 promoter hypermethylation in lung squamous cell carcinoma but not in lung adenocarcinoma. Oncology Letters, 2017, 14, 4989-4994.	0.8	20

#	Article	IF	CITATIONS
91	Elevation of PTPN1 promoter methylation is a significant risk factor of type 2 diabetes in the Chinese population. Experimental and Therapeutic Medicine, 2017, 14, 2976-2982.	0.8	10
92	Elevated UMOD methylation level in peripheral blood is associated with gout risk. Scientific Reports, 2017, 7, 11196.	1.6	20
93	Differentially methylated regions in patients with rheumatic heart disease and secondary pulmonary arterial hypertension. Experimental and Therapeutic Medicine, 2017, 14, 1367-1372.	0.8	10
94	DNA methylation of CMTM3 , SSTR2 , and MDFI genes in colorectal cancer. Gene, 2017, 630, 1-7.	1.0	38
95	CCL2 promoter hypomethylation is associated with gout risk in Chinese Han male population. Immunology Letters, 2017, 190, 15-19.	1.1	34
96	Association of OPRK1 and OPRM1 methylation with mild cognitive impairment in Xinjiang Han and Uygur populations. Neuroscience Letters, 2017, 636, 170-176.	1.0	9
97	microRNA-137 promotes apoptosis in ovarian cancer cells via the regulation of XIAP. British Journal of Cancer, 2017, 116, 66-76.	2.9	81
98	CDKN2A and CDKN2B methylation in coronary heart disease cases and controls. Experimental and Therapeutic Medicine, 2017, 14, 6093-6098.	0.8	5
99	NDRG4 hypermethylation is a potential biomarker for diagnosis and prognosis of gastric cancer in Chinese population. Oncotarget, 2017, 8, 8105-8119.	0.8	25
100	Diagnostic role of Wnt pathway gene promoter methylation in non small cell lung cancer. Oncotarget, 2017, 8, 36354-36367.	0.8	40
101	Elevated OPRD1 promoter methylation in Alzheimer's disease patients. PLoS ONE, 2017, 12, e0172335.	1.1	20
102	The role of TFPI2 hypermethylation in the detection of gastric and colorectal cancer. Oncotarget, 2017, 8, 84054-84065.	0.8	32
103	Combined moderate and high intensity exercise with dietary restriction improves cardiac autonomic function associated with a reduction in central and systemic arterial stiffness in obese adults: a clinical trial. PeerJ, 2017, 5, e3900.	0.9	11
104	Functional Genomics, Genetics, and Bioinformatics 2016. BioMed Research International, 2016, 2016, 1-3.	0.9	1
105	Meta-analysis of DNA methylation biomarkers in hepatocellular carcinoma. Oncotarget, 2016, 7, 81255-81267.	0.8	87
106	DNA methylation and leukemia susceptibility in China: Evidence from an updated meta-analysis. Molecular and Clinical Oncology, 2016, 5, 193-207.	0.4	1
107	Catechol-O-methyltransferase promoter hypomethylation is associated with the risk of coronary heart disease. Experimental and Therapeutic Medicine, 2016, 12, 3445-3449.	0.8	6
108	CDKN2B, SLC19A3 and DLEC1 promoter methylation alterations in the bone marrow of patients with acute myeloid leukemia during chemotherapy. Experimental and Therapeutic Medicine, 2016, 11, 1901-1907.	0.8	3

#	Article	IF	CITATIONS
109	Sex-dichotomous effects of NOS1AP promoter DNA methylation on intracranial aneurysm and brain arteriovenous malformation. Neuroscience Letters, 2016, 621, 47-53.	1.0	12
110	DNA methylation and hypertension: emerging evidence and challenges. Briefings in Functional Genomics, 2016, 15, elw014.	1.3	20
111	H4K5 histone acetylation of BRG1 is associated with heroin administration rather than addiction. Experimental and Therapeutic Medicine, 2016, 12, 1929-1933.	0.8	2
112	TGFB2 and BCL2L11 methylation in male laryngeal cancer patients. Oncology Letters, 2016, 12, 2999-3003.	0.8	3
113	IGF2BP2 rs11705701 polymorphisms are associated with prediabetes in a Chinese population: A population-based case-control study. Experimental and Therapeutic Medicine, 2016, 12, 1849-1856.	0.8	14
114	Estrogen and promoter methylation in the regulation of PLA2G7 transcription. Gene, 2016, 591, 262-267.	1.0	13
115	Elevated methylation of CMTM3 promoter in the male laryngeal squamous cell carcinoma patients. Clinical Biochemistry, 2016, 49, 1278-1282.	0.8	18
116	Association of six CpG-SNPs in the inflammation-related genes with coronary heart disease. Human Genomics, 2016, 10, 21.	1.4	22
117	Association between genetic variations of NMDA receptor NR3 subfamily genes and heroin addiction in male Han Chinese. Neuroscience Letters, 2016, 631, 122-125.	1.0	15
118	APC2 and CYP1B1 methylation changes in the bone marrow of acute myeloid leukemia patients during chemotherapy. Experimental and Therapeutic Medicine, 2016, 12, 3047-3052.	0.8	5
119	Lectin binding of human sperm associates with DEFB126 mutation and serves as a potential biomarker for subfertility. Scientific Reports, 2016, 6, 20249.	1.6	25
120	Promoter hypermethylation of miR-34a contributes to the risk, progression, metastasis and poor survival of laryngeal squamous cell carcinoma. Gene, 2016, 593, 272-276.	1.0	15
121	Association between the methylation status of the MGMT promoter in bone marrow specimens and chemotherapy outcomes of patients with acute myeloid leukemia. Oncology Letters, 2016, 11, 2851-2856.	0.8	12
122	Elevated DRD4 promoter methylation increases the risk of Alzheimer's disease in males. Molecular Medicine Reports, 2016, 14, 2732-2738.	1.1	15
123	Association of SCNN1B promoter methylation with essential hypertension. Molecular Medicine Reports, 2016, 14, 5422-5428.	1.1	14
124	SSTR2 promoter hypermethylation is associated with the risk and progression of laryngeal squamous cell carcinoma in males. Diagnostic Pathology, 2016, 11, 10.	0.9	17
125	A significant association between BDNF promoter methylation and the risk of drug addiction. Gene, 2016, 584, 54-59.	1.0	48
126	Distinguishing Lung Adenocarcinoma from Lung Squamous Cell Carcinoma by Two Hypomethylated and Three Hypermethylated Genes: A Meta-Analysis. PLoS ONE, 2016, 11, e0149088.	1,1	34

#	Article	IF	CITATIONS
127	Aberrant methylation of the GCK gene body is associated with the risk of essential hypertension. Molecular Medicine Reports, 2015, 12, 2390-2394.	1.1	23
128	DNA methylation patterns of protein-coding genes and long non-coding RNAs in males with schizophrenia. Molecular Medicine Reports, 2015, 12, 6568-6576.	1.1	10
129	Meta-analyses of gene methylation and smoking behavior in non-small cell lung cancer patients. Scientific Reports, 2015, 5, 8897.	1.6	59
130	Association of BDNF and BCHE with Alzheimer's disease: Meta-analysis based on 56 genetic case-control studies of 12,563 cases and 12,622 controls. Experimental and Therapeutic Medicine, 2015, 9, 1831-1840.	0.8	31
131	Positive association between PPARD rs2016520 polymorphism and coronary heart disease in a Han Chinese population. Genetics and Molecular Research, 2015, 14, 6350-6359.	0.3	8
132	Positive Association between APOA5 rs662799 Polymorphism and Coronary Heart Disease: A Case-Control Study and Meta-Analysis. PLoS ONE, 2015, 10, e0135683.	1.1	20
133	Functional Genomics, Genetics, and Bioinformatics. BioMed Research International, 2015, 2015, 1-3.	0.9	1
134	Association of seven thrombotic pathway gene CpG-SNPs with coronary heart disease. Biomedicine and Pharmacotherapy, 2015, 72, 98-102.	2.5	9
135	Homocysteine, Ischemic Stroke, and Coronary Heart Disease in Hypertensive Patients. Stroke, 2015, 46, 1777-1786.	1.0	78
136	A lack of association between the IKZF2 rs12619285 polymorphism and coronary heart disease. Experimental and Therapeutic Medicine, 2015, 9, 1309-1313.	0.8	5
137	Another functional frameâ€shift polymorphism of <i><scp>DEFB</scp>126</i> (rs11467497) associated with male infertility. Journal of Cellular and Molecular Medicine, 2015, 19, 1077-1084.	1.6	12
138	PPARD rs2016520 polymorphism and circulating lipid levels connect with brain diseases in Han Chinese and suggest sex-dependent effects. Biomedicine and Pharmacotherapy, 2015, 70, 7-11.	2.5	11
139	Association of four CpG-SNPs in the vascular-related genes with coronary heart disease. Biomedicine and Pharmacotherapy, 2015, 70, 80-83.	2.5	11
140	The interactions between alcohol consumption and DNA methylation of the ADD1 gene promoter modulate essential hypertension susceptibility in a population-based, case–control study. Hypertension Research, 2015, 38, 284-290.	1.5	17
141	Population difference in the association of BDNF promoter methylation with mild cognitive impairment in the Xinjiang Uygur and Han populations. Psychiatry Research, 2015, 229, 926-932.	1.7	12
142	Identification and functional annotation of lncRNA genes with hypermethylation in colorectal cancer. Gene, 2015, 572, 259-265.	1.0	19
143	A lack of association between the CRP rs2794520 polymorphism and coronary artery disease. Biomedical Reports, 2015, 3, 110-114.	0.9	1
144	OPRK1 promoter hypermethylation increases the risk of Alzheimer's disease. Neuroscience Letters, 2015, 606, 24-29.	1.0	28

#	Article	IF	CITATIONS
145	Association between homocysteine and incidence of ischemic stroke in subjects with essential hypertension: A matched case-control study. Clinical and Experimental Hypertension, 2015, 37, 557-562.	0.5	19
146	DNA methylation patterns of protein coding genes and long noncoding RNAs in female schizophrenic patients. European Journal of Medical Genetics, 2015, 58, 95-104.	0.7	13
147	Population Difference in the Associations of KLOTH Promoter Methylation with Mild Cognitive Impairment in Xinjiang Uygur and Han Populations. PLoS ONE, 2015, 10, e0132156.	1.1	13
148	Significant interaction of APOE rs4420638 polymorphism with HDL-C and APOA-I levels in coronary heart disease in Han Chinese men. Genetics and Molecular Research, 2015, 14, 13414-13424.	0.3	11
149	Elevated total plasma homocysteine levels are associated with type 2 diabetes in women with hypertension. Asia Pacific Journal of Clinical Nutrition, 2015, 24, 683-91.	0.3	7
150	Association between RASSF1A Promoter Hypermethylation and Oncogenic HPV Infection Status in Invasive Cervical Cancer: a Meta-analysis. Asian Pacific Journal of Cancer Prevention, 2015, 16, 5749-5754.	0.5	20
151	Elevation of Peripheral BDNF Promoter Methylation Links to the Risk of Alzheimer's Disease. PLoS ONE, 2014, 9, e110773.	1.1	79
152	Association of CDKN2BAS Polymorphism rs4977574 with Coronary Heart Disease: A Case-Control Study and a Meta-Analysis. International Journal of Molecular Sciences, 2014, 15, 17478-17492.	1.8	40
153	Meta-Analysis of Low Density Lipoprotein Receptor (<i>LDLR</i>) rs2228671 Polymorphism and Coronary Heart Disease. BioMed Research International, 2014, 2014, 1-6.	0.9	22
154	A Novel PCR-Based Approach to Discover miRNA Target Genes. International Journal of Medical Sciences, 2014, 11, 1270-1274.	1.1	3
155	Association of NQO1 and TNF polymorphisms with Parkinson's disease: A meta-analysis of 15 genetic association studies. Biomedical Reports, 2014, 2, 713-718.	0.9	13
156	Association between LGALS2 3279C>T and coronary artery disease: A case-control study and a meta-analysis. Biomedical Reports, 2014, 2, 879-885.	0.9	6
157	Investigation into the promoter DNA methylation of three genes (CAMK1D, CRY2 and CALM2) in the peripheral blood of patients with type 2 diabetes. Experimental and Therapeutic Medicine, 2014, 8, 579-584.	0.8	17
158	Polymorphisms of DRD2 and DRD3 genes and Parkinson's disease: A meta-analysis. Biomedical Reports, 2014, 2, 275-281.	0.9	27
159	An Association Study between Genetic Polymorphism in the Interleukin-6 Receptor Gene and Coronary Heart Disease. BioMed Research International, 2014, 2014, 1-6.	0.9	9
160	Meta-analyses of 10 polymorphisms associated with the risk of schizophrenia. Biomedical Reports, 2014, 2, 729-736.	0.9	20
161	Prediabetes Is Associated with $\langle i \rangle$ HNF-4 $\langle b \rangle$ α $\langle b \rangle \langle i \rangle$ P2 Promoter Polymorphism rs1884613: A Case-Control Study in Han Chinese Population and an Updated Meta-Analysis. Disease Markers, 2014, 2014, 1-8.	0.6	9
162	Fat mass and obesity-associated gene rs11642015 polymorphism is significantly associated with prediabetes and type 2 diabetes subsequent to adjustment for body mass index. Biomedical Reports, 2014, 2, 681-686.	0.9	6

#	Article	IF	CITATIONS
163	<i>GCK</i> Gene-Body Hypomethylation Is Associated with the Risk of Coronary Heart Disease. BioMed Research International, 2014, 2014, 1-7.	0.9	32
164	Meta-analyses between 18 candidate genetic markers and overweight/obesity. Diagnostic Pathology, 2014, 9, 56.	0.9	13
165	Association Between Six Genetic Polymorphisms and Colorectal Cancer: A Meta-Analysis. Genetic Testing and Molecular Biomarkers, 2014, 18, 187-195.	0.3	24
166	Meta-analyses of methylation markers for prostate cancer. Tumor Biology, 2014, 35, 10449-10455.	0.8	18
167	Significant association between DRD3 gene body methylation and schizophrenia. Psychiatry Research, 2014, 220, 772-777.	1.7	18
168	Significant association between TAP2 polymorphisms and rheumatoid arthritis: a meta-analysis. Diagnostic Pathology, 2014, 9, 129.	0.9	6
169	Meta-analyses of seven GIGYF2 polymorphisms with Parkinson's disease. Biomedical Reports, 2014, 2, 886-892.	0.9	9
170	The Diagnostic Value of DNA Methylation in Leukemia: A Systematic Review and Meta-Analysis. PLoS ONE, 2014, 9, e96822.	1.1	44
171	Landscape of the relationship between type 2 diabetes and coronary heart disease through an integrated gene network analysis. Gene, 2014, 539, 30-36.	1.0	14
172	Improved reduced representation bisulfite sequencing for epigenomic profiling of clinical samples. Biological Procedures Online, $2014, 16, 1$.	1.4	44
173	Association between TLR2, MTR, MTRR, XPC, TP73, TP53 genetic polymorphisms and gastric cancer: A meta-analysis. Clinics and Research in Hepatology and Gastroenterology, 2014, 38, 346-359.	0.7	19
174	Discovery and Functional Assessment of Gene Variants in the Vascular Endothelial Growth Factor Pathway. Human Mutation, 2014, 35, 227-235.	1.1	12
175	Elevated CpG island methylation of GCK gene predicts the risk of type 2 diabetes in Chinese males. Gene, 2014, 547, 329-333.	1.0	34
176	Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. Journal of Clinical Bioinformatics, 2014, 4, 11.	1.2	13
177	Positive association between lymphotoxin-alpha variation rs909253 and cancer risk: a meta-analysis based on 36 case–control studies. Tumor Biology, 2014, 35, 1973-1983.	0.8	10
178	BCL11A gene DNA methylation contributes to the risk of type 2 diabetes in males. Experimental and Therapeutic Medicine, 2014, 8, 459-463.	0.8	19
179	Male-Specific Association between Dopamine Receptor D4 Gene Methylation and Schizophrenia. PLoS ONE, 2014, 9, e89128.	1.1	49
180	Genetic associations with coronary heart disease: Meta-analyses of 12 candidate genetic variants. Gene, 2013, 531, 71-77.	1.0	15

#	Article	IF	CITATIONS
181	Meta-analyses of four eosinophil related gene variants in coronary heart disease. Journal of Thrombosis and Thrombolysis, 2013, 36, 394-401.	1.0	12
182	Association between PCSK9 and LDLR gene polymorphisms with coronary heart disease: Case-control study and meta-analysis. Clinical Biochemistry, 2013, 46, 727-732.	0.8	33
183	Hypermethylation of EDNRB promoter contributes to the risk of colorectal cancer. Diagnostic Pathology, 2013, 8, 199.	0.9	53
184	Positive association between $\hat{a}^{\prime\prime}1021TT$ genotype of dopamine beta hydroxylase gene and progressive behavior of injection heroin users. Neuroscience Letters, 2013, 541, 258-262.	1.0	30
185	Relationship between chemokine (C–X–C motif) ligand 12 gene variant (rs1746048) and coronary heart disease: Case–control study and meta-analysis. Gene, 2013, 521, 38-44.	1.0	19
186	Identification of susceptibility modules for coronary artery disease using a genome wide integrated network analysis. Gene, 2013, 531, 347-354.	1.0	17
187	Meta-analyses of HFE variants in coronary heart disease. Gene, 2013, 527, 167-173.	1.0	17
188	Positive Association between <i>GCKR</i> rs780093 Polymorphism and Coronary Heart Disease in the Aged Han Chinese. Disease Markers, 2013, 35, 863-868.	0.6	7
189	Positive Association Between rs10918859 of the <i>NOS1AP</i> Gene and Coronary Heart Disease in Male Han Chinese. Genetic Testing and Molecular Biomarkers, 2013, 17, 25-29.	0.3	15
190	Genetic Associations with Hypertension: Meta-Analyses of Six Candidate Genetic Variants. Genetic Testing and Molecular Biomarkers, 2013, 17, 736-742.	0.3	15
191	Gender-dependent miR-375 promoter methylation and the risk of type 2 diabetes. Experimental and Therapeutic Medicine, 2013, 5, 1687-1692.	0.8	10
192	Apolipoprotein A5 gene variants and the risk of coronary heart disease: A case-control study and meta-analysis. Molecular Medicine Reports, 2013, 8, 1175-1182.	1.1	29
193	No association between IRS-1 promoter methylation and type 2 diabetes. Molecular Medicine Reports, 2013, 8, 949-953.	1.1	14
194	Positive correlation between variants of lipid metabolism-related genes and coronary heart disease. Molecular Medicine Reports, 2013, 8, 260-266.	1.1	6
195	An association study between genetic polymorphisms related to lipoprotein-associated phospholipase A2 and coronary heart disease. Experimental and Therapeutic Medicine, 2013, 5, 742-750.	0.8	22
196	Elevated PLA2G7 Gene Promoter Methylation as a Gender-Specific Marker of Aging Increases the Risk of Coronary Heart Disease in Females. PLoS ONE, 2013, 8, e59752.	1.1	73
197	Lower ADD1 Gene Promoter DNA Methylation Increases the Risk of Essential Hypertension. PLoS ONE, 2013, 8, e63455.	1.1	51
198	Meta-Analyses of 8 Polymorphisms Associated with the Risk of the Alzheimer's Disease. PLoS ONE, 2013, 8, e73129.	1.1	34

#	Article	IF	CITATIONS
199	Genetic Associations with Diabetes: Meta-Analyses of 10 Candidate Polymorphisms. PLoS ONE, 2013, 8, e70301.	1.1	14
200	Four Genetic Polymorphisms of Lymphotoxin-Alpha Gene and Cancer Risk: A Systematic Review and Meta-Analysis. PLoS ONE, 2013, 8, e82519.	1.1	24
201	An eQTL-based method identifies CTTN and ZMAT3 as pemetrexed susceptibility markers. Human Molecular Genetics, 2012, 21, 1470-1480.	1.4	16
202	A case-control study provides evidence of association for a common SNP rs974819 in PDGFD to coronary heart disease and suggests a sex-dependent effect. Thrombosis Research, 2012, 130, 602-606.	0.8	38
203	Meta-Analyses of KIF6 Trp719Arg in Coronary Heart Disease and Statin Therapeutic Effect. PLoS ONE, 2012, 7, e50126.	1.1	24
204	The PADI4 gene does not contribute to genetic susceptibility to rheumatoid arthritis in Chinese Han population. Rheumatology International, 2011, 31, 1631-1634.	1.5	23
205	Platinum Sensitivity–Related Germline Polymorphism Discovered via a Cell-Based Approach and Analysis of Its Association with Outcome in Ovarian Cancer Patients. Clinical Cancer Research, 2011, 17, 5490-5500.	3.2	57
206	Population differences in microRNA expression and biological implications. RNA Biology, 2011, 8, 692-701.	1.5	138
207	Prevalent false positives of azoospermia factor a (AZFa) microdeletions caused by single-nucleotide polymorphism rs72609647 in the sY84 screening of male infertility. Asian Journal of Andrology, 2011, 13, 877-880.	0.8	13
208	miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells. PLoS ONE, 2011, 6, e26521.	1.1	46
209	Trait-Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS. PLoS Genetics, 2010, 6, e1000888.	1.5	1,161
210	SCAN: SNP and copy number annotation. Bioinformatics, 2010, 26, 259-262.	1.8	214
211	Heritable and non-genetic factors as variables of pharmacologic phenotypes in lymphoblastoid cell lines. Pharmacogenomics Journal, 2010, 10, 505-512.	0.9	43
212	PACdb: a database for cell-based pharmacogenomics. Pharmacogenetics and Genomics, 2010, 20, 269-273.	0.7	40
213	ExprTarget: An Integrative Approach to Predicting Human MicroRNA Targets. PLoS ONE, 2010, 5, e13534.	1.1	80
214	Gene Set Enrichment Analyses Revealed Differences in Gene Expression Patterns between Males and Females. In Silico Biology, 2009, 9, 55-63.	0.4	22
215	Comprehensive analysis of the impact of SNPs and CNVs on human microRNAs and their regulatory genes. RNA Biology, 2009, 6, 412-425.	1.5	58
216	Methods for analysis in pharmacogenomics: lessons from the Pharmacogenetics Research Network Analysis Group. Pharmacogenomics, 2009, 10, 243-251.	0.6	11

#	Article	IF	Citations
217	Population-specific GSTM1 copy number variation. Human Molecular Genetics, 2009, 18, 366-372.	1.4	34
218	A survey of the population genetic variation in the human kinome. Journal of Human Genetics, 2009, 54, 488-492.	1.1	1
219	Identification of common genetic variants that account for transcript isoform variation between human populations. Human Genetics, 2009, 125, 81-93.	1.8	75
220	Identification of genomic regions contributing to etoposide-induced cytotoxicity. Human Genetics, 2009, 125, 173-180.	1.8	51
221	No significant association between genetic polymorphisms in the TNAP gene and ankylosing spondylitis in the Chinese Han population. Rheumatology International, 2009, 29, 305-310.	1.5	5
222	A case–control association study between the CYP3A4 and CYP3A5 genes and schizophrenia in the Chinese Han population. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2009, 33, 1200-1204.	2.5	10
223	Expression and alternative splicing of folate pathway genes in HapMap lymphoblastoid cell lines. Pharmacogenomics, 2009, 10, 549-563.	0.6	13
224	Population-specific genetic variants important in susceptibility to cytarabine arabinoside cytotoxicity. Blood, 2009, 113, 2145-2153.	0.6	81
225	Whole-genome approach implicates CD44 in cellular resistance to carboplatin. Human Genomics, 2009, 3, 128.	1.4	23
226	Gene set enrichment analyses revealed differences in gene expression patterns between males and females. In Silico Biology, 2009, 9, 55-63.	0.4	15
227	Comprehensive analysis of polymorphisms throughout GAD1 gene: a family-based association study in schizophrenia. Journal of Neural Transmission, 2008, 115, 513-519.	1.4	27
228	Evaluation of Genetic Variation Contributing to Differences in Gene Expression between Populations. American Journal of Human Genetics, 2008, 82, 631-640.	2.6	192
229	Genetic Architecture of Transcript-Level Variation in Humans. American Journal of Human Genetics, 2008, 82, 1101-1113.	2.6	142
230	Evaluation of Genetic Variation Contributing to Differences in Gene Expression between Populations. American Journal of Human Genetics, 2008, 82, 1223.	2.6	2
231	Genetic Variants Contributing to Daunorubicin-Induced Cytotoxicity. Cancer Research, 2008, 68, 3161-3168.	0.4	74
232	Genetic variants associated with carboplatin-induced cytotoxicity in cell lines derived from Africans. Molecular Cancer Therapeutics, 2008, 7, 3038-3046.	1.9	66
233	Identification of genetic variants and gene expression relationships associated with pharmacogenes in humans. Pharmacogenetics and Genomics, 2008, $18,545-549.$	0.7	22
234	Susceptibility loci involved in cisplatin-induced cytotoxicity and apoptosis. Pharmacogenetics and Genomics, 2008, 18, 253-262.	0.7	41

#	Article	IF	CITATIONS
235	HapMap filter 1.0: A tool to preprocess the HapMap genotypic data for association studies. Bioinformation, 2008, 2, 322-324.	0.2	2
236	SNPinProbe_1.0: A database for filtering out probes in the Affymetrix GeneChip® Human Exon 1.0 ST array potentially affected by SNPs. Bioinformation, 2008, 2, 469-470.	0.2	33
237	FstSNP-HapMap3: a database of SNPs with high population differentiation for HapMap3. Bioinformation, 2008, 3, 139-141.	0.2	32
238	A genome-wide approach to identify genetic variants that contribute to etoposide-induced cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9758-9763.	3.3	195
239	The relationship between the therapeutic response to risperidone and the dopamine D2 receptor polymorphism in Chinese schizophrenia patients. International Journal of Neuropsychopharmacology, 2007, 10, 631-7.	1.0	52
240	Mapping Genes that Contribute to Daunorubicin-Induced Cytotoxicity. Cancer Research, 2007, 67, 5425-5433.	0.4	80
241	Identification of Genetic Variants Contributing to Cisplatin-Induced Cytotoxicity by Use of a Genomewide Approach. American Journal of Human Genetics, 2007, 81, 427-437.	2.6	173
242	Tumor necrosis factor alpha â^308 polymorphism is associated with rheumatoid arthritis in Han population of Eastern China. Rheumatology International, 2007, 28, 121-126.	1.5	17
243	Further evidence for the association between G72/G30 genes and schizophrenia in two ethnically distinct populations. Molecular Psychiatry, 2006, 11, 479-487.	4.1	64
244	Failure to find association between TRAR4 and schizophrenia in the Chinese Han population. Journal of Neural Transmission, 2006, 113, 381-385.	1.4	24
245	Polymorphisms of the ABCB1 gene are associated with the therapeutic response to risperidone in Chinese schizophrenia patients. Pharmacogenomics, 2006, 7, 987-993.	0.6	79
246	Analysis of the Association between <i>Apolipoprotein D</i> and Schizophrenia. Neuropsychobiology, 2006, 54, 40-44.	0.9	5
247	No association between the serotonin 1B receptor gene and schizophrenia in a case–control and family-based association study. Neuroscience Letters, 2005, 376, 93-97.	1.0	14
248	A family-based association study of schizophrenia with polymorphisms at three candidate genes. Neuroscience Letters, 2005, 379, 32-36.	1.0	41
249	A family-based study of the association between the G72/G30 genes and schizophrenia in the Chinese population. Schizophrenia Research, 2005, 73, 257-261.	1.1	59
250	Distribution of apolipoprotein E allele frequencies of the Han Chinese in an iodine-deficient mountainous area. Annals of Human Biology, 2004, 31, 578-585.	0.4	3
251	Positive association of the DIO2 (deiodinase type 2) gene with mental retardation in the iodine-deficient areas of China. Journal of Medical Genetics, 2004, 41, 585-590.	1.5	78
252	A case–control study provides evidence of association for a functional polymorphism â^197C/G in XBP1 to schizophrenia and suggests a sex-dependent effect. Biochemical and Biophysical Research Communications, 2004, 319, 866-870.	1.0	39

SHIWEI DUAN

#	Article	IF	CITATION
253	No association between the genetic polymorphisms within RTN4 and schizophrenia in the Chinese population. Neuroscience Letters, 2004, 365, 23-27.	1.0	12
254	No association between the promoter variants of tumor necrosis factor alpha (TNF- $\hat{l}\pm$) and schizophrenia in Chinese Han population. Neuroscience Letters, 2004, 366, 139-143.	1.0	39
255	No genetic association between polymorphisms in the AMPA receptor subunit GluR4 gene (GRIA4) and schizophrenia in the Chinese population. Neuroscience Letters, 2004, 369, 168-172.	1.0	13
256	Family-Based Association Study of Synapsin II and Schizophrenia. American Journal of Human Genetics, 2004, 75, 873-877.	2.6	44
257	A Glycolysis Gene Methylation Prediction Model Based on Explainable Machine Learning for Alzheimer's Disease. SSRN Electronic Journal, 0, , .	0.4	0