Moi Hoon Yap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1283927/publications.pdf

Version: 2024-02-01

279798 182427 3,459 113 23 51 citations h-index g-index papers 116 116 116 2560 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Analysis of the ISIC image datasets: Usage, benchmarks and recommendations. Medical Image Analysis, 2022, 75, 102305.	11.6	64
2	Diabetic foot ulcer classification using mapped binary patterns and convolutional neural networks. Computers in Biology and Medicine, 2022, 140, 105055.	7.0	22
3	Diabetic Foot Ulcer Grand Challenge 2021: Evaluation and Summary. Lecture Notes in Computer Science, 2022, , 90-105.	1.3	11
4	A Cloud-Based Deep Learning Framework for Remote Detection of Diabetic Foot Ulcers. IEEE Pervasive Computing, 2022, 21, 78-86.	1.3	16
5	Development ofÂDiabetic Foot Ulcer Datasets: AnÂOverview. Lecture Notes in Computer Science, 2022, , 1-18.	1.3	10
6	Deep Learning in Mammography Breast Cancer Detection. , 2022, , 1287-1300.		0
7	Vitamin D prescribing practices amongÂclinical practitioners during the COVIDâ€19 pandemic. Health Science Reports, 2022, 5, .	1.5	3
8	A randomised control trial for measuring student engagement through the Internet of Things and serious games. Internet of Things (Netherlands), 2021, 13, 100332.	7.7	19
9	A comprehensive review of past and present image inpainting methods. Computer Vision and Image Understanding, 2021, 203, 103147.	4.7	46
10	The DFUC 2020 Dataset: Analysis Towards Diabetic Foot Ulcer Detection. European Endocrinology, 2021, 17, 5.	1.5	43
11	The DFUC 2020 Dataset: Analysis Towards Diabetic Foot Ulcer Detection. European Endocrinology, 2021, 1, 5.	1.5	2
12	Novel technologies for detection and prevention of diabetic foot ulcers., 2021,, 107-122.		3
13	R-MNet: A Perceptual Adversarial Network for Image Inpainting. , 2021, , .		16
14	Computational modelling unveils how epiblast remodelling and positioning rely on trophectoderm morphogenesis during mouse implantation. PLoS ONE, 2021, 16, e0254763.	2.5	7
15	Analysis Towards Classification of Infection and Ischaemia of Diabetic Foot Ulcers., 2021,,.		42
16	Synthesising Facial Macro- and Micro-Expressions Using Reference Guided Style Transfer. Journal of Imaging, 2021, 7, 142.	3.0	3
17	Deep learning in diabetic foot ulcers detection: A comprehensive evaluation. Computers in Biology and Medicine, 2021, 135, 104596.	7.0	75
18	A Survey on Facial Wrinkles Detection and Inpainting: Datasets, Methods, and Challenges. IEEE Transactions on Emerging Topics in Computational Intelligence, 2021, 5, 505-519.	4.9	9

#	Article	IF	Citations
19	FME'21., 2021,,.		6
20	Foreground-Guided Facial Inpainting with Fidelity Preservation. Lecture Notes in Computer Science, 2021, , 231-241.	1.3	0
21	Interpretability of a Deep Learning Based Approach for the Classification of Skin Lesions into Main Anatomic Body Sites. Cancers, 2021, 13, 6048.	3.7	11
22	DFUNet: Convolutional Neural Networks for Diabetic Foot Ulcer Classification. IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, 4, 728-739.	4.9	133
23	A review of silhouette extraction algorithms for use within visual hull pipelines. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2020, 8, 649-670.	1.9	5
24	A Comprehensive Study on Loss Functions for Cross-Factor Face Recognition. , 2020, , .		8
25	Interpreting clinical significance of machine learning approaches and radiomics in radiation oncology trials. Radiotherapy and Oncology, 2020, 152, 78-79.	0.6	0
26	FISHnet: Learning to Segment the Silhouettes of Swimmers. IEEE Access, 2020, 8, 178311-178321.	4.2	5
27	Breast ultrasound region of interest detection and lesion localisation. Artificial Intelligence in Medicine, 2020, 107, 101880.	6.5	69
28	Radiomics: Quantitative Radiology transforming Oncology Care. British Journal of Radiology, 2020, 93, 20200333.	2.2	1
29	Adjusted Quick Shift Phase Preserving Dynamic Range Compression method for breast lesions segmentation. Informatics in Medicine Unlocked, 2020, 20, 100344.	3.4	11
30	Recognition of ischaemia and infection in diabetic foot ulcers: Dataset and techniques. Computers in Biology and Medicine, 2020, 117, 103616.	7.0	107
31	Edge-Embedded Multi-Dropout Framework for Real-Time Face Alignment. IEEE Access, 2020, 8, 6032-6044.	4.2	2
32	Skin Lesion Segmentation in Dermoscopic Images With Ensemble Deep Learning Methods. IEEE Access, 2020, 8, 4171-4181.	4.2	177
33	A new process to measure postural sway using a Kinect depth camera during a Sensory Organisation Test. PLoS ONE, 2020, 15, e0227485.	2.5	11
34	Evaluation of Automatic Facial Wrinkle Detection Algorithms. Journal of Imaging, 2020, 6, 17.	3.0	7
35	Deep learning for mass detection in Full Field Digital Mammograms. Computers in Biology and Medicine, 2020, 121, 103774.	7.0	83
36	SAMM Long Videos: A Spontaneous Facial Micro- and Macro-Expressions Dataset. , 2020, , .		45

#	Article	IF	Citations
37	Spotting Macro-and Micro-expression Intervals in Long Video Sequences. , 2020, , .		22
38	MEGC2020 - The Third Facial Micro-Expression Grand Challenge. , 2020, , .		12
39	Adaptive Mask for Region-based Facial Micro-Expression Recognition. , 2020, , .		7
40	Computational Intelligence in Automatic Face Age Estimation: A Survey. IEEE Transactions on Emerging Topics in Computational Intelligence, 2019, 3, 271-285.	4.9	15
41	Understanding Face Age Estimation: humans and machine. , 2019, , .		3
42	Spotting Micro-Expressions on Long Videos Sequences. , 2019, , .		22
43	MEGC 2019 – The Second Facial Micro-Expressions Grand Challenge. , 2019, , .		63
44	Face Recognition with Disentangled Facial Representation Learning and Data Augmentation. , 2019, , .		4
45	Description and validation of the LocoWhisk system: Quantifying rodent exploratory, sensory and motor behaviours. Journal of Neuroscience Methods, 2019, 328, 108440.	2.5	13
46	The implication of spatial temporal changes on facial micro-expression analysis. Multimedia Tools and Applications, 2019, 78, 21613-21628.	3.9	6
47	Face Synthesis and Recognition Using Disentangled Representation-Learning Wasserstein GAN. , 2019, , .		2
48	An Empirical Study to Evaluate Structural Similarity for Source Code Translation., 2019,,.		2
49	Robust Methods for Real-Time Diabetic Foot Ulcer Detection and Localization on Mobile Devices. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1730-1741.	6.3	119
50	Automatic mass detection in mammograms using deep convolutional neural networks. Journal of Medical Imaging, 2019, 6, 1.	1.5	114
51	Automated Facial Wrinkles Annotator. Lecture Notes in Computer Science, 2019, , 676-680.	1.3	1
52	The effect of color constancy algorithms on semantic segmentation of skin lesions. , 2019, , .		3
53	Skin lesion boundary segmentation with fully automated deep extreme cut methods. , 2019, , .		2
54	The Contributions of Fiber Atrophy, Fiber Loss, In Situ Specific Force, and Voluntary Activation to Weakness in Sarcopenia. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 1287-1294.	3.6	80

#	Article	IF	Citations
55	SAMM: A Spontaneous Micro-Facial Movement Dataset. IEEE Transactions on Affective Computing, 2018, 9, 116-129.	8.3	330
56	A novel automated rodent tracker (ART), demonstrated in a mouse model of amyotrophic lateral sclerosis. Journal of Neuroscience Methods, 2018, 300, 147-156.	2.5	29
57	A New Mobile Application for Standardizing Diabetic Foot Images. Journal of Diabetes Science and Technology, 2018, 12, 169-173.	2.2	51
58	Hybrid Ageing Patterns for face age estimation. Image and Vision Computing, 2018, 69, 92-102.	4.5	24
59	Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 1218-1226.	6.3	569
60	Objective Classes for Micro-Facial Expression Recognition. Journal of Imaging, 2018, 4, 119.	3.0	73
61	Digital Analysis of Sit-to-Stand in Masters Athletes, Healthy Old People, and Young Adults Using a Depth Sensor. Healthcare (Switzerland), 2018, 6, 21.	2.0	9
62	Objective Micro-Facial Movement Detection Using FACS-Based Regions and Baseline Evaluation. , 2018, , .		31
63	Facial Micro-Expressions Grand Challenge 2018 Summary. , 2018, , .		35
64	Towards Real-Time Facial Landmark Detection in Depth Data Using Auxiliary Information. Symmetry, 2018, 10, 230.	2.2	7
65	The effect of filtering algorithms for breast ultrasound lesions segmentation. Informatics in Medicine Unlocked, 2018, 12, 14-20.	3.4	17
66	Automatic Segmentation of MRI Human Thigh Muscles. , 2018, , .		13
67	Breast ultrasound lesions recognition: end-to-end deep learning approaches. Journal of Medical Imaging, 2018, 6, 1.	1.5	35
68	End-to-end breast ultrasound lesions recognition with a deep learning approach., 2018,,.		6
69	The Application of Neural Networks for Facial Landmarking on Mobile Devices. , 2018, , .		1
70	Capillary detection in transverse muscle sections., 2018,,.		0
71	Automated Analysis and Quantification of Human Mobility Using a Depth Sensor. IEEE Journal of Biomedical and Health Informatics, 2017, 21, 939-948.	6.3	40
72	Multi-layer age regression for face age estimation. , 2017, , .		6

#	Article	IF	CITATIONS
73	Deep convolutional neural networks for motion instability identification using kinect., 2017,,.		3
74	Postural Stability During Standing Balance and Sit-to-Stand in Master Athlete Runners Compared With Nonathletic Old and Young Adults. Journal of Aging and Physical Activity, 2017, 25, 345-350.	1.0	22
75	A comparative study of the clinical use of motion analysis from Kinect skeleton data. , 2017, , .		5
76	Fully convolutional networks for diabetic foot ulcer segmentation., 2017,,.		95
77	Component Biologically Inspired Features with Moving Segmentation for Age Estimation. , 2017, , .		5
78	An Online Tool for the Annotation of 3D Models. , 2017, , .		5
79	Automated assessment of facial wrinkling: A case study on the effect of smoking. , 2017, , .		8
80	Facial Skin Classification Using Convolutional Neural Networks. Lecture Notes in Computer Science, 2017, , 479-485.	1.3	17
81	Formulating efficient software solution for digital image processing system. Software - Practice and Experience, 2016, 46, 931-954.	3.6	3
82	Breast ultrasound lesions classification: a performance evaluation between manual delineation and computer segmentation. Proceedings of SPIE, $2016, \ldots$	0.8	4
83	Whey protein with potassium bicarbonate supplement attenuates the reduction in muscle oxidative capacity during 19 days of bed rest. Journal of Applied Physiology, 2016, 121, 838-848.	2.5	33
84	Computer Vision Algorithms in the Detection of Diabetic Foot Ulceration. Journal of Diabetes Science and Technology, 2016, 10, 612-613.	2.2	12
85	Manual Whisker Annotator (MWA): A Modular Open-Source Tool. Journal of Open Research Software, 2016, 4, 16.	5.9	12
86	Benchmarking human motion analysis using kinect one: An open source dataset., 2015,,.		21
87	Will Wrinkle Estimate the Face Age?., 2015,,.		10
88	Micro-Facial Movement Detection Using Individualised Baselines and Histogram-Based Descriptors. , $2015, \ldots$		30
89	Wrinkle Detection Using Hessian Line Tracking. IEEE Access, 2015, 3, 1079-1088.	4.2	36
90	Micro-Facial Movements: An Investigation on Spatio-Temporal Descriptors. Lecture Notes in Computer Science, 2015, , 111-123.	1.3	12

#	Article	IF	Citations
91	Automatic Wrinkle Detection Using Hybrid Hessian Filter. Lecture Notes in Computer Science, 2015, , 609-622.	1.3	29
92	Mobile Framework for Cognitive Assessment: Trail Making Test and Reaction Time Test. , 2014, , .		4
93	Enhancement of MRI human thigh muscle segmentation by template-based framework. , 2014, , .		4
94	Atlas-registration based image segmentation of MRI human thigh muscles in 3D space. Proceedings of SPIE, 2014, , .	0.8	17
95	Exemplar-Based Human Action Recognition with Template Matching from a Stream of Motion Capture. Lecture Notes in Computer Science, 2014, , 12-20.	1.3	14
96	Facial Behavioral Analysis: A Case Study in Deception Detection. British Journal of Applied Science & Technology, 2014, 4, 1485-1496.	0.2	9
97	Human Activity Recognition for Physical Rehabilitation. , 2013, , .		28
98	A database for facial behavioural analysis. , 2013, , .		3
99	Intensity score for facial actions detection in near-frontal-view face sequences. , 2012, , .		0
100	Face Recognition in the Presence of Expressions. Journal of Software Engineering and Applications, 2012, 05, 321-329.	1.1	10
101	Computer Aided Detection and Recognition of Lesions in Ultrasound Breast Images., 2012,, 125-152.		0
102	Visual cues of facial behaviour in deception detection., 2011,,.		4
103	Facial Image Processing in Computer Vision. , 2011, , 179-190.		0
104	Computer Aided Detection and Recognition of Lesions in Ultrasound Breast Images. International Journal of Computational Models and Algorithms in Medicine, 2010, 1, 53-81.	0.4	0
105	Facial image processing for facial analysis. , 2010, , .		4
106	Processed images in human perception: A case study in ultrasound breast imaging. European Journal of Radiology, 2010, 73, 682-687.	2.6	29
107	A comparative study in ultrasound breast imaging classification. , 2009, , .		9
108	On the utilisation of a service-oriented infrastructure to support radiologist training. , 2009, , .		0

#	Article	IF	CITATIONS
109	A Short Review of Methods for Face Detection and Multifractal Analysis. , 2009, , .		14
110	A novel algorithm for initial lesion detection in ultrasound breast images. Journal of Applied Clinical Medical Physics, 2008, 9, 181-199.	1.9	73
111	Generic Infrastructure for Medical Informatics (GIMI): The Development of a Mammographic Training System. Lecture Notes in Computer Science, 2008, , 577-584.	1.3	7
112	Object Boundary Detection in Ultrasound Images. , 0, , .		4
113	Facial Image Processing in Computer Vision. , 0, , 1111-1123.		0