
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1283316/publications.pdf Version: 2024-02-01

LUN IN

#	Article	IF	CITATIONS
1	MOF derived Co ₃ O ₄ nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR. Journal of Materials Chemistry A, 2015, 3, 17392-17402.	10.3	351
2	Synthesis of Cu–MoS2/rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction. Journal of Power Sources, 2015, 292, 15-22.	7.8	214
3	Pd immobilized on amine-functionalized magnetite nanoparticles: a novel and highly active catalyst for hydrogenation and Heck reactions. Green Chemistry, 2011, 13, 1238.	9.0	203
4	Lateral-Size-Mediated Efficient Oxygen Evolution Reaction: Insights into the Atomically Thin Quantum Dot Structure of NiFe ₂ O ₄ . ACS Catalysis, 2017, 7, 5557-5567.	11.2	156
5	MoS ₂ quantum dot decorated RGO: a designed electrocatalyst with high active site density for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 21772-21778.	10.3	127
6	Self-assembly of cobalt-centered metal organic framework and multiwalled carbon nanotubes hybrids as a highly active and corrosion-resistant bifunctional oxygen catalyst. Journal of Power Sources, 2016, 326, 50-59.	7.8	118
7	Nitrogen-doped mesoporous carbon nanosheet/carbon nanotube hybrids as metal-free bi-functional electrocatalysts for water oxidation and oxygen reduction. Journal of Materials Chemistry A, 2016, 4, 13133-13141.	10.3	116
8	Ultrafine Co ₂ P nanoparticles encapsulated in nitrogen and phosphorus dual-doped porous carbon nanosheet/carbon nanotube hybrids: high-performance bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 15501-15510.	10.3	90
9	Covalent functionalization of black phosphorus nanoflakes by carbon free radicals for durable air and water stability. Nanoscale, 2018, 10, 5834-5839.	5.6	90
10	Engineering three-dimensional nitrogen-doped carbon black embedding nitrogen-doped graphene anchoring ultrafine surface-clean Pd nanoparticles as efficient ethanol oxidation electrocatalyst. Applied Catalysis B: Environmental, 2021, 280, 119464.	20.2	90
11	Precious-metal-free Co–Fe–O _x coupled nitrogen-enriched porous carbon nanosheets derived from Schiff-base porous polymers as superior electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 6505-6512.	10.3	89
12	Dual Modification of a BiVO ₄ Photoanode for Enhanced Photoelectrochemical Performance. ChemSusChem, 2018, 11, 2502-2509.	6.8	84
13	Highly dispersive Ag nanoparticles on functionalized graphene for an excellent electrochemical sensor of nitroaromatic compounds. Chemical Communications, 2011, 47, 12494.	4.1	81
14	Facile regrowth of Mg-Fe ₂ O ₃ /P-Fe ₂ O ₃ homojunction photoelectrode for efficient solar water oxidation. Journal of Materials Chemistry A, 2018, 6, 13412-13418.	10.3	80
15	In2S3/F-Fe2O3 type-II heterojunction bonded by interfacial S-O for enhanced charge separation and transport in photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 2022, 305, 121011.	20.2	79
16	Bamboo shoots shaped FeVO4 passivated ZnO nanorods photoanode for improved charge separation/transfer process towards efficient solar water splitting. Applied Catalysis B: Environmental, 2019, 257, 117813.	20.2	77
17	Enhanced-electrocatalytic activity of Ni _{1â^'x} Fe _x alloy supported on polyethyleneimine functionalized MoS ₂ nanosheets for hydrazine oxidation. RSC Advances, 2014, 4, 1988-1995.	3.6	76
18	Boosting Hole Transfer in the Fluorine-Doped Hematite Photoanode by Depositing Ultrathin Amorphous FeOOH/CoOOH Cocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 49705-49712.	8.0	76

#	Article	IF	CITATIONS
19	Enhancing catalytic performance of Au catalysts by noncovalent functionalized graphene using functional ionic liquids. Journal of Hazardous Materials, 2014, 270, 11-17.	12.4	74
20	Construction of an efficient hole migration pathway on hematite for efficient photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2018, 6, 23478-23485.	10.3	73
21	Ultrafine CoPS nanoparticles encapsulated in N, P, and S tri-doped porous carbon as an efficient bifunctional water splitting electrocatalyst in both acid and alkaline solutions. Journal of Materials Chemistry A, 2018, 6, 10433-10440.	10.3	72
22	NiO Nanoparticles Anchored on Phosphorusâ€Doped αâ€Fe ₂ O ₃ Nanoarrays: An Efficient Hole Extraction p–n Heterojunction Photoanode for Water Oxidation. ChemSusChem, 2018, 11, 2156-2164.	6.8	69
23	Conformally Coupling CoAl-Layered Double Hydroxides on Fluorine-Doped Hematite: Surface and Bulk Co-Modification for Enhanced Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2019, 11, 29799-29806.	8.0	68
24	Magnetic Fe nanoparticle functionalized water-soluble multi-walled carbon nanotubules towards the preparation of sorbent for aromatic compounds removal. Chemical Communications, 2007, , 386-388.	4.1	67
25	Ni@Pd/PEI–rGO stack structures with controllable Pd shell thickness as advanced electrodes for efficient hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 11261-11268.	10.3	64
26	Ultrafine palladium-gold-phosphorus ternary alloyed nanoparticles anchored on ionic liquids-noncovalently functionalized carbon nanotubes with excellent electrocatalytic property for ethanol oxidation reaction in alkaline media. Journal of Catalysis, 2017, 353, 256-264.	6.2	64
27	Facile growth of AgVO3 nanoparticles on Mo-doped BiVO4 film for enhanced photoelectrochemical water oxidation. Chemical Engineering Journal, 2019, 378, 122193.	12.7	63
28	In situ growth of Ni–Fe alloy on graphene-like MoS2 for catalysis of hydrazine oxidation. Journal of Materials Chemistry, 2012, 22, 13925.	6.7	57
29	In situ growth of ultrathin Ni–Fe LDH nanosheets for high performance oxygen evolution reaction. Inorganic Chemistry Frontiers, 2017, 4, 1173-1181.	6.0	57
30	Negatively charged 2D black phosphorus for highly efficient covalent functionalization. Materials Chemistry Frontiers, 2018, 2, 1700-1706.	5.9	56
31	Controllable orientation-dependent crystal growth of high-index faceted dendritic NiC _{0.2} nanosheets as high-performance bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 18499-18508.	10.3	51
32	Polyethyleneimine decorated graphene oxide-supported Ni1â^'xFex bimetallic nanoparticles as efficient and robust electrocatalysts for hydrazine fuel cells. Catalysis Science and Technology, 2013, 3, 3155.	4.1	50
33	Palladium Nanoparticles Anchored on Three-Dimensional Nitrogen-Doped Carbon Nanotubes as a Robust Electrocatalyst for Ethanol Oxidation. ACS Sustainable Chemistry and Engineering, 2018, 6, 7918-7923.	6.7	50
34	Surface Reconstruction of Cobalt Species on Amorphous Cobalt Silicate-Coated Fluorine-Doped Hematite for Efficient Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 47572-47580.	8.0	50
35	N,Cu-Codoped Carbon Nanosheet/Au/CuBi ₂ O ₄ Photocathodes for Efficient Photoelectrochemical Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 7257-7264.	6.7	48
36	A highly active hydrazine fuel cell catalyst consisting of a Ni–Fe nanoparticle alloy plated on carbon materials by pulse reversal. RSC Advances, 2012, 2, 5038.	3.6	45

#	Article	IF	CITATIONS
37	Modulation of the Chemical Microenvironment at the Hematite-Based Photoanode Interface with a Covalent Triazine Framework for Efficient Photoelectrochemical Water Oxidation. ACS Catalysis, 2022, 12, 3700-3709.	11.2	44
38	Crystal lattice distortion in ultrathin Co(OH) ₂ nanosheets inducing elongated Co–O _{OH} bonds for highly efficient oxygen evolution reaction. Green Chemistry, 2017, 19, 5809-5817.	9.0	43
39	Heterojunction and Oxygen Vacancy Modification of ZnO Nanorod Array Photoanode for Enhanced Photoelectrochemical Water Splitting. ChemSusChem, 2018, 11, 4094-4101.	6.8	42
40	Palladium nanoparticles anchored on NCNTs@NGS with a three-dimensional sandwich-stacked framework as an advanced electrocatalyst for ethanol oxidation. Journal of Materials Chemistry A, 2018, 6, 14717-14724.	10.3	40
41	Layered Double Hydroxide onto Perovskite Oxide-Decorated ZnO Nanorods for Modulation of Carrier Transfer Behavior in Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 2452-2459.	8.0	40
42	Activating a hematite nanorod photoanode <i>via</i> fluorine-doping and surface fluorination for enhanced oxygen evolution reaction. Nanoscale, 2020, 12, 3259-3266.	5.6	40
43	Nitrogen-doped truncated carbon nanotubes inserted into nitrogen-doped graphene nanosheets with a sandwich structure: a highly efficient metal-free catalyst for the HER. Journal of Materials Chemistry A, 2017, 5, 6405-6410.	10.3	38
44	Polythiophene coated CuBi2O4 networks: A porous inorganic–organic hybrid heterostructure for enhanced photoelectrochemical hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 2064-2072.	7.1	34
45	Microenvironment Effects in Electrocatalysis: Ionicâ€Liquidâ€Like Coating on Carbon Nanotubes Enhances the Pdâ€Electrocatalytic Alcohol Oxidation. Chemistry - A European Journal, 2013, 19, 2384-2391.	3.3	33
46	Palladium Nanoparticles with Surface Enrichment of Palladium Oxide Species Immobilized on the Aniline-Functionalized Graphene As an Advanced Electrocatalyst of Ethanol Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 14621-14628.	6.7	31
47	2, 2′-(phenylazanediyl) diacetic acid modified Fe ₃ O ₄ @PEI for selective removal of cadmium ions from blood. Nanoscale, 2012, 4, 733-736.	5.6	30
48	Rationally Designed Heterojunction on a CuBi ₂ O ₄ Photocathode for Improved Activity and Stability during Photoelectrochemical Water Reduction. ChemElectroChem, 2019, 6, 3367-3374.	3.4	30
49	Facile fabrication of palladium-ionic liquids-nitrogen-doped graphene nanocomposites as enhanced electro-catalyst for ethanol oxidation. Journal of Power Sources, 2015, 294, 360-368.	7.8	29
50	A oxygen vacancy-modulated homojunction structural CuBi ₂ O ₄ photocathodes for efficient solar water reduction. Nanoscale, 2020, 12, 15193-15200.	5.6	29
51	The green synthesis of ultrafine palladium–phosphorus alloyed nanoparticles anchored on polydopamine functionalized graphene used as an excellent electrocatalyst for ethanol oxidation. Inorganic Chemistry Frontiers, 2017, 4, 1881-1887.	6.0	28
52	Phosphorus Dualâ€Doped MoO ₂ Nanosheet/Multiwalled Carbon Nanotube Hybrid as Efficient Electrocatalyst for Hydrogen Evolution. ChemElectroChem, 2018, 5, 2660-2665.	3.4	26
53	Hole extraction and injection pathways constructed by the in situ growth of ultra-thin Fe-doped NiOOH Co-catalysts on a fluorine-doped α-Fe2O3 photoanode. Journal of Power Sources, 2021, 482, 228957.	7.8	26
54	The role of reducing agent in perylene tetracarboxylic acid coating on graphene sheets enhances Pd nanoparticles-electrocalytic ethanol oxidation. Catalysis Science and Technology, 2013, 3, 2303.	4.1	25

#	Article	IF	CITATIONS
55	Unraveling the Cooperative Synergy of Palladium/Tin Oxide/Aniline-Functionalized Carbon Nanotubes Enabled by Layer-by-Layer Synthetic Strategy for Ethanol Electrooxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 10008-10015.	6.7	23
56	Ionic liquids-noncovalently functionalized multi-walled carbon nanotubes decorated with palladium nanoparticles: A promising electrocatalyst for ethanol electrooxidation. International Journal of Hydrogen Energy, 2016, 41, 12358-12368.	7.1	20
57	Nanoâ€Cuâ€Mediated Multiâ€Site Approach to Ultrafine MoO ₂ Nanoparticles on Poly(diallyldimethylammonium chloride)â€Decorated Reduced Graphene Oxide for Hydrogen Evolution Electrocatalysis. ChemSusChem, 2019, 12, 441-448.	6.8	19
58	Layer-by-layer fabrication of polydopamine functionalized carbon nanotubes-ceria-palladium nanohybrids for boosting ethanol electrooxidation. International Journal of Hydrogen Energy, 2017, 42, 13209-13216.	7.1	17
59	Dual-doping in the bulk and the surface to ameliorate the hematite anode for photoelectrochemical water oxidation. Journal of Colloid and Interface Science, 2022, 624, 60-69.	9.4	17
60	Synthesis of Novel Porphyrin and its Complexes Covalently Linked to Multi-Walled Carbon Nanotubes and Study of their Spectroscopy. Nanoscale Research Letters, 2009, 4, 578-583.	5.7	16
61	Bifunctional citrate-Ni _{0.9} Co _{0.1} (OH) _{<i>x</i>} layer coated fluorine-doped hematite for simultaneous hole extraction and injection towards efficient photoelectrochemical water oxidation. Nanoscale, 2021, 13, 14197-14206.	5.6	16
62	Mxene coupled over nitrogen-doped graphene anchoring palladium nanocrystals as an advanced electrocatalyst for the ethanol electrooxidation. Journal of Colloid and Interface Science, 2022, 610, 944-952.	9.4	16
63	Coaxial ultrathin Co1â^'yFeyOx nanosheet coating on carbon nanotubes for water oxidation with excellent activity. RSC Advances, 2016, 6, 80613-80620.	3.6	15
64	Achieving surface-sealing of hematite nanoarray photoanode with controllable metal–organic frameworks shell for enhanced photoelectrochemical water oxidation. Journal of Catalysis, 2022, 413, 398-406.	6.2	15
65	Synthesis of Ag nanoparticles decorated multiwalled carbon nanotubes using dialdehydestarch as complexant and reductant for antibacterial purposes. RSC Advances, 2013, 3, 918-922.	3.6	14
66	Polydopamine-functionalized multi-walled carbon nanotubes-supported palladium–lead bimetallic alloy nanoparticles as highly efficient and robust catalysts for ethanol oxidation. RSC Advances, 2016, 6, 90462-90469.	3.6	13
67	Revealing the Essential Role of Iron Phosphide and its Surfaceâ€Evolved Species in the Photoelectrochemical Water Oxidation by Gdâ€Doped Hematite Photoanode. ChemSusChem, 2022, 15, .	6.8	13
68	Decorating the Cocatalyst Membrane with Coordinated Tannic Acid and Ternary Metal for Advancing Photoelectrochemical Performance of F-Doped Hematite Photoanodes. ACS Sustainable Chemistry and Engineering, 2021, 9, 13047-13055.	6.7	12
69	Room chemical bath temperature deposition of Mn:FeOOH on BiVO4 photoanode to enhance water oxidation. Journal of Alloys and Compounds, 2022, 894, 162571.	5.5	11
70	Coupling palladium nanocrystals over D‑phenylalanine-functionalized carbon nanotubes as an advanced electrocatalyst for hydrogen evolution and ethanol oxidation. Electrochimica Acta, 2020, 364, 137290.	5.2	9
71	The enhanced water splitting activity of a ZnO-based photoanode by modification with self-doped lanthanum ferrite. Nanoscale, 2021, 13, 11215-11222.	5.6	9
72	Synergistic two- and three-dimensional morphology engineering of pyrite-type CoPS to boost hydrogen evolution over wide pH range. Journal of Power Sources, 2021, 484, 229144.	7.8	7

#	Article	IF	CITATIONS
73	Bismuthâ€Containing SBAâ€15 Mesoporous Silica Catalysts for Solventâ€Free Liquidâ€Phase Oxidation of Cyclohexane by Molecular Oxygen. Helvetica Chimica Acta, 2007, 90, 1837-1847.	1.6	6
74	Spinel-type ferrites decorated ZnO for enhanced photoelectrochemical water splitting. Optical Materials, 2022, 129, 112451.	3.6	5
75	In situ growth of monodispersed Fe3O4 nanoparticles on graphene for the removal of heavy metals and aromatic compounds. Water Science and Technology, 2013, 68, 2351-2358.	2.5	2