Caroline Saucier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1282704/publications.pdf

Version: 2024-02-01

394421 361022 1,293 39 19 35 citations g-index h-index papers 39 39 39 2001 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Met/Hepatocyte Growth Factor Receptor Ubiquitination Suppresses Transformation and Is Required for Hrs Phosphorylation. Molecular and Cellular Biology, 2005, 25, 9632-9645.	2.3	173
2	The 5-HT1A receptor: Signaling, desensitization, and gene transcription. Neuropsychopharmacology, 1996, 14, 19-25.	5.4	108
3	Constitutively active MEK1 is sufficient to induce epithelialâ€toâ€mesenchymal transition in intestinal epithelial cells and to promote tumor invasion and metastasis. International Journal of Cancer, 2009, 125, 1575-1586.	5.1	74
4	The Shc adaptor protein is critical for VEGF induction by Met/HGF and ErbB2 receptors and for early onset of tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2345-2350.	7.1	69
5	NLRC5 elicits antitumor immunity by enhancing processing and presentation of tumor antigens to CD8 ⁺ T lymphocytes. Oncolmmunology, 2016, 5, e1151593.	4.6	62
6	Use of signal specific receptor tyrosine kinase oncoproteins reveals that pathways downstream from Grb2 or Shc are sufficient for cell transformation and metastasis. Oncogene, 2002, 21, 1800-1811.	5.9	59
7	The PTEN Phosphatase Controls Intestinal Epithelial Cell Polarity and Barrier Function: Role in Colorectal Cancer Progression. PLoS ONE, 2010, 5, e15742.	2.5	59
8	Gab1 but not Grb2 mediates tumor progression in Met overexpressing colorectal cancer cells. Carcinogenesis, 2008, 29, 647-655.	2.8	53
9	SOCS1 controls liver regeneration by regulating HGF signaling in hepatocytes. Journal of Hepatology, 2011, 55, 1300-1308.	3.7	50
10	The Adaptor Proteins p66Shc and Grb2 Regulate the Activation of the GTPases ARF1 and ARF6 in Invasive Breast Cancer Cells. Journal of Biological Chemistry, 2014, 289, 5687-5703.	3.4	50
11	SOCS1 in cancer: An oncogene and a tumor suppressor. Cytokine, 2016, 82, 87-94.	3.2	47
12	Suppressor of cytokine signaling 1-dependent regulation of the expression and oncogenic functions of p21CIP1/WAF1 in the liver. Oncogene, 2016, 35, 4200-4211.	5.9	46
13	Grb2-independent Recruitment of Gab1 Requires the C-terminal Lobe and Structural Integrity of the Met Receptor Kinase Domain. Journal of Biological Chemistry, 2003, 278, 30083-30090.	3.4	45
14	Pre-irradiation of mouse mammary gland stimulates cancer cell migration and development of lung metastases. British Journal of Cancer, 2013, 109, 1829-1838.	6.4	45
15	Regulation of MET receptor tyrosine kinase signaling by suppressor of cytokine signaling 1 in hepatocellular carcinoma. Oncogene, 2015, 34, 5718-5728.	5.9	43
16	Endogenous serotonin-2A and -2C receptors in Balb/c-3T3 cells revealed in serotonin-free medium. Biochemical Pharmacology, 1998, 56, 1347-1357.	4.4	36
17	Gab1 Is Required for Cell Cycle Transition, Cell Proliferation, and Transformation Induced by an Oncogenic Met Receptor. Molecular Biology of the Cell, 2006, 17, 3717-3728.	2.1	32
18	Tumour-promoting role of SOCS1 in colorectal cancer cells. Scientific Reports, 2015, 5, 14301.	3.3	28

#	Article	IF	CITATIONS
19	Identification of an Endogenous 5-Hydroxytryptamine2A Receptor in NIH-3T3 Cells: Agonist-Induced Down-Regulation Involves Decreases in Receptor RNA and Number. Journal of Neurochemistry, 2002, 68, 1998-2011.	3.9	22
20	Stimulation of triple negative breast cancer cell migration and metastases formation is prevented by chloroquine in a pre-irradiated mouse model. BMC Cancer, 2016, 16, 361.	2.6	21
21	Attenuation of MET-mediated migration and invasion in hepatocellular carcinoma cells by SOCS1. World Journal of Gastroenterology, 2017, 23, 6639-6649.	3.3	19
22	Met receptor-induced Grb2 or Shc signals both promote transformation of intestinal epithelial cells, albeit they are required for distinct oncogenic functions. BMC Cancer, 2014, 14, 240.	2.6	18
23	Expression of SOCS1 and the downstream targets of its putative tumor suppressor functions in prostate cancer. BMC Cancer, 2017, 17, 157.	2.6	17
24	Radiation-induced lung metastasis development is MT1-MMP-dependent in a triple-negative breast cancer mouse model. British Journal of Cancer, 2017, 116, 479-488.	6.4	16
25	Induction of interleukin- $1\hat{l}^2$ by mouse mammary tumor irradiation promotes triple negative breast cancer cells invasion and metastasis development. International Journal of Radiation Biology, 2017, 93, 507-516.	1.8	14
26	Caspase-mediated proteolysis of the sorting nexin 2 disrupts retromer assembly and potentiates Met/hepatocyte growth factor receptor signaling. Cell Death Discovery, 2017, 3, 16100.	4.7	12
27	Oncogenic Met receptor induces ectopic structures in Xenopus embryos. Oncogene, 2006, 25, 4286-4299.	5.9	11
28	SOCS1 inhibits migration and invasion of prostate cancer cells, attenuates tumor growth and modulates the tumor stroma. Prostate Cancer and Prostatic Diseases, 2017, 20, 36-47.	3.9	11
29	Hypoxia Downregulates LPP3 and Promotes the Spatial Segregation of ATX and LPP1 During Cancer Cell Invasion. Cancers, 2019, 11, 1403.	3.7	11
30	Oncogenic engagement of the Met receptor is sufficient to evoke angiogenic, tumorigenic, and metastatic activities in rat intestinal epithelial cells. American Journal of Physiology - Renal Physiology, 2010, 299, G677-G686.	3.4	10
31	Regulation of MET Receptor Signaling by SOCS1 and its Implications for Hepatocellular Carcinoma. Current Pharmaceutical Design, 2014, 20, 2922-2933.	1.9	10
32	Oncogenic met receptor induces cell-cycle progression inXenopus oocytes independent of direct Grb2 and Shc binding or mos synthesis, but requires phosphatidylinositol 3-kinase and raf signaling. Journal of Cellular Physiology, 2006, 207, 271-285.	4.1	7
33	Epithelial Cell Signalling in Colorectal Cancer Metastasis. Cancer Metastasis - Biology and Treatment, 2010, , 205-241.	0.1	5
34	Dissecting Oncogenic RTK Pathways in Colorectal Cancer Initiation and Progression. Methods in Molecular Biology, 2018, 1765, 27-42.	0.9	4
35	Non-canonical dynamic mechanisms of interaction between the p66Shc protein and Met receptor. Biochemical Journal, 2016, 473, 1617-1627.	3.7	3
36	Caspases play in traffic. Cell Death and Disease, 2017, 8, e2636-e2636.	6.3	3

#	ARTICLE	IF	CITATIONS
37	65 SOCS1 NEGATIVELY REGULATES THE HEPATOCYTE GROWTH FACTOR RECEPTOR MET VIA UBIQUITINATION AND PROTEASOMAL DEGRADATION. Journal of Hepatology, 2012, 56, S29.	3.7	0
38	1052 SOCS1 PROTECTS AGAINST THE ONCOGENIC POTENTIAL OF p21Cip1WAF IN THE LIVER. Journal of Hepatology, 2013, 58, S432.	3.7	0
39	Abstract LB-018: Cleavage of SNX2 protein by initiator caspases promotes hepatocyte growth factor (MET) receptor tyrosine kinase signaling. , 2017, , .		0