Eckhard Jankowsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1282105/publications.pdf

Version: 2024-02-01

87 papers	8,234 citations	41 h-index	58581 82 g-index
papero	Citations	II IIIdex	5 macx
91 all docs	91 docs citations	91 times ranked	8255 citing authors

#	Article	IF	CITATIONS
1	From unwinding to clamping $\hat{a} \in \text{``}$ the DEAD box RNA helicase family. Nature Reviews Molecular Cell Biology, 2011, 12, 505-516.	37.0	886
2	SF1 and SF2 helicases: family matters. Current Opinion in Structural Biology, 2010, 20, 313-324.	5.7	756
3	<i>mda-5</i> : An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 637-642.	7.1	577
4	RNA helicases at work: binding and rearranging. Trends in Biochemical Sciences, 2011, 36, 19-29.	7. 5	449
5	Inherited and Somatic Defects in DDX41 in Myeloid Neoplasms. Cancer Cell, 2015, 27, 658-670.	16.8	341
6	Angiogenin-Cleaved tRNA Halves Interact with Cytochrome <i>c</i> , Protecting Cells from Apoptosis during Osmotic Stress. Molecular and Cellular Biology, 2014, 34, 2450-2463.	2.3	236
7	RNA helicases — one fold for many functions. Current Opinion in Structural Biology, 2007, 17, 316-324.	5.7	224
8	Protein Displacement by DExH/D "RNA Helicases" Without Duplex Unwinding. Science, 2004, 304, 730-734.	12.6	218
9	Specificity and nonspecificity in RNA–protein interactions. Nature Reviews Molecular Cell Biology, 2015, 16, 533-544.	37.0	216
10	ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20209-20214.	7.1	213
11	The DExH protein NPH-II is a processive and directional motor for unwinding RNA. Nature, 2000, 403, 447-451.	27.8	209
12	Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10460-10465.	7.1	209
13	The DEAD-Box Protein Ded1 Modulates Translation by the Formation and Resolution of an eIF4F-mRNA Complex. Molecular Cell, 2011, 43, 962-972.	9.7	203
14	The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. EMBO Journal, 2002, 21, 1168-1176.	7.8	191
15	ATP- and ADP-Dependent Modulation of RNA Unwinding and Strand Annealing Activities by the DEAD-Box Protein DED1. Biochemistry, 2005, 44, 13591-13601.	2.5	165
16	DEAD-box helicases as integrators of RNA, nucleotide and protein binding. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 884-893.	1.9	164
17	Involvement of DEAD-box Proteins in Group I and Group II Intron Splicing. Biochemical Characterization of Mss116p, ATP Hydrolysis-dependent and -independent Mechanisms, and General RNA Chaperone Activity. Journal of Molecular Biology, 2007, 365, 835-855.	4.2	149
18	The Ded1/DDX3 subfamily of DEAD-box RNA helicases. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49, 343-360.	5.2	147

#	Article	IF	CITATIONS
19	The helicase Ded1p controls use of near-cognate translation initiation codons in 5′ UTRs. Nature, 2018, 559, 130-134.	27.8	143
20	DEAD-Box Proteins Unwind Duplexes by Local Strand Separation. Molecular Cell, 2007, 28, 253-263.	9.7	141
21	The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Nature Structural and Molecular Biology, 2006, 13, 981-986.	8.2	132
22	Dynamic Regulation of Alternative Splicing by Silencers that Modulate 5′ Splice Site Competition. Cell, 2008, 135, 1224-1236.	28.9	118
23	Remodeling of ribonucleoprotein complexes with DExH/D RNA helicases. Nucleic Acids Research, 2006, 34, 4181-4188.	14.5	116
24	Discovery of Antivirulence Agents against Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2013, 57, 3645-3652.	3.2	116
25	Small molecules as potent biphasic modulators of protein liquid-liquid phase separation. Nature Communications, 2020, 11, 5574.	12.8	96
26	The RNA Helicase Mtr4p Modulates Polyadenylation in the TRAMP Complex. Cell, 2011, 145, 890-901.	28.9	92
27	Hidden specificity in an apparently nonspecific RNA-binding protein. Nature, 2013, 502, 385-388.	27.8	85
28	Degradation of hypomodified tRNA _i ^{Met} in vivo involves RNA-dependent ATPase activity of the DExH helicase Mtr4p. Rna, 2008, 14, 107-116.	3.5	84
29	Unwinding by Local Strand Separation Is Critical for the Function of DEAD-Box Proteins as RNA Chaperones. Journal of Molecular Biology, 2009, 389, 674-693.	4.2	76
30	Function of the C-terminal Domain of the DEAD-box Protein Mss116p Analyzed in Vivo and in Vitro. Journal of Molecular Biology, 2008, 375, 1344-1364.	4.2	74
31	Autoinhibitory Interdomain Interactions and Subfamily-specific Extensions Redefine the Catalytic Core of the Human DEAD-box Protein DDX3. Journal of Biological Chemistry, 2016, 291, 2412-2421.	3.4	71
32	Backbone tracking by the SF2 helicase NPH-II. Nature Structural and Molecular Biology, 2004, 11, 526-530.	8.2	69
33	RNA unwinding by the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7292-7297.	7.1	65
34	Discriminatory RNP remodeling by the DEAD-box protein DED1. Rna, 2006, 12, 903-912.	3.5	61
35	Do DEAD-Box Proteins Promote Group II Intron Splicing without Unwinding RNA?. Molecular Cell, 2007, 28, 159-166.	9.7	61
36	The RNA helicase database. Nucleic Acids Research, 2011, 39, D338-D341.	14.5	61

#	Article	IF	Citations
37	Division of Labor in an Oligomer of the DEAD-Box RNA Helicase Ded1p. Molecular Cell, 2015, 59, 541-552.	9.7	60
38	Coupling between the DEAD-box RNA helicases Ded1p and eIF4A. ELife, 2016, 5, .	6.0	55
39	The kinetic landscape of an RNA-binding protein in cells. Nature, 2021, 591, 152-156.	27.8	50
40	[10] Using DNAzylnes to cut, process, and map RNA molecules for structural studies or modification. Methods in Enzymology, 2000, 317, 140-146.	1.0	49
41	Robust Translocation Along a Molecular Monorail: the NS3 Helicase from Hepatitis C Virus Traverses Unusually Large Disruptions in its Track. Journal of Molecular Biology, 2006, 358, 974-982.	4.2	45
42	The DExH/D protein family database. Nucleic Acids Research, 2000, 28, 333-334.	14.5	44
43	DEAD-Box Helicases Form Nucleotide-Dependent, Long-Lived Complexes with RNA. Biochemistry, 2014, 53, 423-433.	2.5	43
44	Biochemical Differences and Similarities between the DEAD-Box Helicase Orthologs DDX3X and Ded1p. Journal of Molecular Biology, 2017, 429, 3730-3742.	4.2	36
45	DEAD-box-protein-assisted RNA Structure Conversion Towards and Against Thermodynamic Equilibrium Values. Journal of Molecular Biology, 2007, 368, 1087-1100.	4.2	35
46	RNA Unwinding Activity of the Hepatitis C Virus NS3 Helicase Is Modulated by the NS5B Polymerase. Biochemistry, 2008, 47, 1126-1135.	2.5	35
47	Intrinsic RNA Binding by the Eukaryotic Initiation Factor 4F Depends on a Minimal RNA Length but Not on the m7G Cap. Journal of Biological Chemistry, 2009, 284, 17742-17750.	3.4	34
48	Duplex Unwinding with DEAD-Box Proteins. Methods in Molecular Biology, 2009, 587, 245-264.	0.9	34
49	Small-molecule AgrA inhibitors F12 and F19 act as antivirulence agents against Gram-positive pathogens. Scientific Reports, 2018, 8, 14578.	3.3	32
50	Approaches for measuring the dynamics of RNA–protein interactions. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1565.	6.4	32
51	Efficient Improvement of Hammerhead Ribozyme Mediated Cleavage of Long Substrates by Oligonucleotide Facilitatorsâ€. Biochemistry, 1996, 35, 15313-15321.	2.5	28
52	AMP Sensing by DEAD-Box RNA Helicases. Journal of Molecular Biology, 2013, 425, 3839-3845.	4.2	28
53	A comparative study of small molecules targeting elF4A. Rna, 2020, 26, 541-549.	3.5	27
54	DEAD-box RNA helicases Dbp2, Ded1 and Mss116 bind to G-quadruplex nucleic acids and destabilize G-quadruplex RNA. Chemical Communications, 2019, 55, 4467-4470.	4.1	26

#	Article	IF	CITATIONS
55	An Arabidopsis ATP-Dependent, DEAD-Box RNA Helicase Loses Activity upon IsoAsp Formation but Is Restored by PROTEIN ISOASPARTYL METHYLTRANSFERASE. Plant Cell, 2013, 25, 2573-2586.	6.6	25
56	The RNA helicase Mtr4p is a duplex-sensing translocase. Nature Chemical Biology, 2017, 13, 99-104.	8.0	23
57	The DEAD-box protein Dbp2p is linked to noncoding RNAs, the helicase Sen1p, and R-loops. Rna, 2018, 24, 1693-1705.	3.5	23
58	Mutational analysis of the yeast RNA helicase Sub2p reveals conserved domains required for growth, mRNA export, and genomic stability. Rna, 2013, 19, 1363-1371.	3.5	21
59	Analysis of the RNA Binding Specificity Landscape of C5 Protein Reveals Structure and Sequence Preferences that Direct RNase P Specificity. Cell Chemical Biology, 2016, 23, 1271-1281.	5.2	21
60	Unwinding Initiation by the Viral RNA Helicase NPH-II. Journal of Molecular Biology, 2012, 415, 819-832.	4.2	19
61	Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress. Molecular Cell, 2021, 81, 4191-4208.e8.	9.7	18
62	Oligonucleotide facilitators enable a hammerhead ribozyme to cleave long RNA substrates with multiple-turnover activity. FEBS Journal, 1998, 254, 129-134.	0.2	16
63	RNA Helicases: Versatile ATP-Driven Nanomotors. Journal of Nanoscience and Nanotechnology, 2005, 5, 1983-1989.	0.9	15
64	Duplex Unwinding and RNP Remodeling With RNA Helicases. Methods in Molecular Biology, 2008, 488, 343-355.	0.9	14
65	The contribution of the C5 protein subunit of <i>Escherichia coli</i> ribonuclease P to specificity for precursor tRNA is modulated by proximal 5′ leader sequences. Rna, 2017, 23, 1502-1511.	3.5	12
66	Mapping specificity landscapes of RNA-protein interactions by high throughput sequencing. Methods, 2017, 118-119, 111-118.	3.8	11
67	Function of Auxiliary Domains of the DEAH/RHA Helicase DHX36 in RNA Remodeling. Journal of Molecular Biology, 2020, 432, 2217-2231.	4.2	11
68	Optimization of high-throughput sequencing kinetics for determining enzymatic rate constants of thousands of RNA substrates. Analytical Biochemistry, 2016, 510, 1-10.	2.4	10
69	Determination of the Specificity Landscape for Ribonuclease P Processing of Precursor tRNA 5′ Leader Sequences. ACS Chemical Biology, 2016, 11, 2285-2292.	3.4	10
70	Binding of a viral IRES to the 40S subunit occurs in two successive steps mediated by eS25. Nucleic Acids Research, 2020, 48, 8063-8073.	14.5	9
71	G-quadruplex DNA inhibits unwinding activity but promotes liquid–liquid phase separation by the DEAD-box helicase Ded1p. Chemical Communications, 2021, 57, 7445-7448.	4.1	9
72	Analysis of Duplex Unwinding by RNA Helicases Using Stopped-Flow Fluorescence Spectroscopy. Methods in Enzymology, 2012, 511, 1-27.	1.0	8

#	Article	IF	Citations
73	A helicase links upstream ORFs and RNA structure. Current Genetics, 2019, 65, 453-456.	1.7	8
74	Substrate selectivity by the exonuclease Rrp6p. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 982-992.	7.1	8
75	Active and Passive Destabilization of G-Quadruplex DNA by the Telomere POT1-TPP1 Complex. Journal of Molecular Biology, 2021, 433, 166846.	4.2	7
76	Helicase Multitasking in Ribosome Assembly. Molecular Cell, 2009, 36, 537-538.	9.7	6
77	Indifferent chaperones. Nature, 2007, 449, 999-1000.	27.8	5
78	High throughput approaches to study RNA-protein interactions in vitro. Methods, 2020, 178, 3-10.	3.8	5
79	Helicase snaps back. Nature, 2005, 437, 1245-1245.	27.8	4
80	Alternative RNA degradation pathways by the exonuclease Pop2p from Saccharomyces cerevisiae. Rna, 2021, 27, 465-476.	3.5	3
81	Measuring the impact of cofactors on RNA helicase activities. Methods, 2022, 204, 376-385.	3.8	3
82	DDX41 Is a Tumor Suppressor Gene Associated with Inherited and Acquired Mutations. Blood, 2014, 124, 125-125.	1.4	1
83	From exotic to exciting. Rna, 2015, 21, 655-656.	3.5	0
84	Kinetics of RNA–protein interactions in cells. Trends in Biochemical Sciences, 2021, 46, 861-862.	7. 5	0
85	Effect of preâ€ŧRNA 5' leader sequence variation on the thermodynamic coupling and shared molecular recognition between RNA and protein components of RNase P. FASEB Journal, 2013, 27, 777.2.	0.5	0
86	STEM-08. PLATELETS DRIVES GLIOBLASTOMA ONCOGENESIS BY ENHANCING THE GLIOMA STEM CELL PHENOTYPE. Neuro-Oncology, 2020, 22, ii198-ii198.	1.2	0
87	STEM-04. PLATELETS DRIVE GLIOBLASTOMA ONCOGENESIS BY ENHANCING THE GLIOMA STEM CELL PHENOTYPE. Neuro-Oncology, 2020, 22, ii197-ii197.	1.2	0