Nicholas Golledge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1281707/publications.pdf

Version: 2024-02-01

108 papers 6,005 citations

71102 41 h-index 79698 73 g-index

144 all docs 144 docs citations

times ranked

144

4575 citing authors

#	Article	IF	Citations
1	The multi-millennial Antarctic commitment to future sea-level rise. Nature, 2015, 526, 421-425.	27.8	322
2	Global environmental consequences of twenty-first-century ice-sheet melt. Nature, 2019, 566, 65-72.	27.8	277
3	The northern sector of the last British Ice Sheet: Maximum extent and demise. Earth-Science Reviews, 2008, 88, 207-226.	9.1	276
4	A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quaternary Science Reviews, 2014, 100, 1-9.	3.0	228
5	Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature, 2019, 566, 58-64.	27.8	215
6	Dynamic cycles, ice streams and their impact on the extent, chronology and deglaciation of the British–Irish ice sheet. Quaternary Science Reviews, 2009, 28, 758-776.	3.0	214
7	Projected land ice contributions to twenty-first-century sea level rise. Nature, 2021, 593, 74-82.	27.8	200
8	ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere, 2020, 14, 3033-3070.	3.9	198
9	Retreat of the East Antarctic ice sheet during the last glacial termination. Nature Geoscience, 2011, 4, 195-202.	12.9	169
10	Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nature Communications, 2014, 5, 5107.	12.8	161
11	The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere, 2020, 14, 3071-3096.	3.9	144
12	Retreat history of the East Antarctic Ice Sheet since the Last Glacial Maximum. Quaternary Science Reviews, 2014, 100, 10-30.	3.0	140
13	The Greenland and Antarctic ice sheets under 1.5 $\hat{A}^{o}C$ global warming. Nature Climate Change, 2018, 8, 1053-1061.	18.8	135
14	Antarctic ice sheet sensitivity to atmospheric CO ₂ variations in the early to mid-Miocene. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3453-3458.	7.1	133
15	Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16052-16056.	7.1	108
16	Glaciology and geological signature of the Last Glacial Maximum Antarctic ice sheet. Quaternary Science Reviews, 2013, 78, 225-247.	3.0	99
17	Microstructures in subglacial and proglacial sediments: understanding faults, folds and fabrics, and the influence of water on the style of deformation. Quaternary Science Reviews, 2007, 26, 1499-1528.	3.0	98
18	Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature, 2016, 533, 385-389.	27.8	98

#	Article	IF	CITATIONS
19	Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2). Earth System Dynamics, 2020, 11, 35-76.	7.1	92
20	Last Glacial Maximum climate in New Zealand inferred from a modelled Southern Alps icefield. Quaternary Science Reviews, 2012, 46, 30-45.	3.0	91
21	Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison. Cryosphere, 2018, 12, 1433-1460.	3.9	89
22	High-resolution numerical simulation of Younger Dryas glaciation in Scotland. Quaternary Science Reviews, 2008, 27, 888-904.	3.0	88
23	Glaciation of Scotland during the Younger Dryas stadial: a review. Journal of Quaternary Science, 2010, 25, 550-566.	2.1	75
24	Antarctic ice-sheet sensitivity to obliquity forcing enhanced through ocean connections. Nature Geoscience, 2019, 12, 132-137.	12.9	74
25	Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability. Nature Communications, 2015, 6, 8910.	12.8	70
26	Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). Journal of Glaciology, 2020, 66, 891-904.	2.2	70
27	initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6. Cryosphere, 2019, 13, 1441-1471.	3.9	69
28	Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge. Nature, 2017, 541, 72-76.	27.8	68
29	East Antarctic ice sheet most vulnerable to Weddell Sea warming. Geophysical Research Letters, 2017, 44, 2343-2351.	4.0	67
30	Oceanic forcing of penultimate deglacial and last interglacial sea-level rise. Nature, 2020, 577, 660-664.	27.8	62
31	Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project. Cryosphere, 2015, 9, 881-903.	3.9	61
32	Antarctic marine ice-sheet retreat in the Ross Sea during the early Holocene. Geology, 2016, 44, 7-10.	4.4	58
33	Evolution of a Lateglacial mountain icecap in northern Scotland. Boreas, 2011, 40, 536-554.	2.4	57
34	Sustained Antarctic Research: A 21st Century Imperative. One Earth, 2019, 1, 95-113.	6.8	54
35	Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet meltwater input. Earth's Future, 2015, 3, 317-329.	6.3	50
36	Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3996-4006.	7.1	50

#	Article	IF	Citations
37	The Sensitivity of the Antarctic Ice Sheet to a Changing Climate: Past, Present, and Future. Reviews of Geophysics, 2020, 58, e2019RG000663.	23.0	49
38	Testing the sensitivity of the East Antarctic Ice Sheet to Southern Ocean dynamics: past changes and future implications. Journal of Quaternary Science, 2014, 29, 91-98.	2.1	46
39	Modelled glacier response to centennial temperature and precipitation trends on the Antarctic Peninsula. Nature Climate Change, 2014, 4, 993-998.	18.8	46
40	Subglacial landforms of the tweed palaeoâ€ice stream. Scottish Geographical Journal, 2005, 121, 163-173.	1.1	44
41	An ice cap landsystem for palaeoglaciological reconstructions: characterizing the Younger Dryas in western Scotland. Quaternary Science Reviews, 2007, 26, 213-229.	3.0	44
42	The Ross Sea Dipole $\hat{a}\in$ " temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700Âyears. Climate of the Past, 2018, 14, 193-214.	3.4	44
43	Aeolian sediment transport and deposition in a modern highâ€latitude glacial marine environment. Sedimentology, 2014, 61, 1535-1557.	3.1	42
44	First cosmogenic 10Be age constraint on the timing of Younger Dryas glaciation and ice cap thickness, western Scottish Highlands. Journal of Quaternary Science, 2007, 22, 785-791.	2.1	40
45	Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23†Ma. Climate of the Past, 2017, 13, 959-975.	3.4	40
46	A palaeo-ice stream of the British Ice Sheet in eastern Scotland. Boreas, 2006, 35, 231-243.	2.4	39
47	Antarctic Cenozoic climate history from sedimentary records: ANDRILL and beyond. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20140301.	3.4	36
48	Spatio-temporal variability of processes across Antarctic ice-bed–ocean interfaces. Nature Communications, 2018, 9, 2289.	12.8	34
49	Widespread persistence of expanded East Antarctic glaciers in the southwest Ross Sea during the last deglaciation. Geology, 2017, 45, 403-406.	4.4	33
50	Antarctic ice sheet discharge driven by atmosphere-ocean feedbacks at the Last Glacial Termination. Scientific Reports, 2017, 7, 39979.	3.3	33
51	Evaluating Younger Dryas glacier reconstructions in part of the western Scottish Highlands: a combined empirical and theoretical approach. Boreas, 2005, 34, 274-286.	2.4	32
52	Tidally induced velocity variations of the Beardmore Glacier, Antarctica, and their representation in satellite measurements of ice velocity. Cryosphere, 2013, 7, 1375-1384.	3.9	32
53	Pattern, style and timing of British–Irish Ice Sheet retreat: Shetland and northern North Sea sector. Journal of Quaternary Science, 2021, 36, 681-722.	2.1	31
54	Late Neogene climate and glacial history of the Southern Victoria Land coast from integrated drill core, seismic and outcrop data. Global and Planetary Change, 2012, 80-81, 61-84.	3 . 5	29

#	Article	IF	CITATIONS
55	Future Sea Level Change Under Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland and Antarctic Ice Sheets. Geophysical Research Letters, 2021, 48, e2020GL091741.	4.0	28
56	Influence of seasonality on glacier mass balance, and implications for palaeoclimate reconstructions. Climate Dynamics, 2010, 35, 757-770.	3.8	27
57	Minimal East Antarctic Ice Sheet retreat onto land during the past eight million years. Nature, 2018, 558, 284-287.	27.8	27
58	Deglacial grounding-line retreat in the Ross Embayment, Antarctica, controlled by ocean and atmosphere forcing. Science Advances, 2019, 5, eaav8754.	10.3	27
59	Ten new insights in climate science 2021: a horizon scan. Global Sustainability, 2021, 4, .	3.3	26
60	Sedimentology and architecture of De Geer moraines in the western Scottish Highlands, and implications for grounding-line glacier dynamics. Sedimentary Geology, 2008, 208, 1-14.	2.1	25
61	Past water flow beneath Pine Island and Thwaites glaciers, West Antarctica. Cryosphere, 2019, 13, 1959-1981.	3.9	25
62	Assessing the continuity of the blue ice climate record at Patriot Hills, Horseshoe Valley, West Antarctica. Geophysical Research Letters, 2016, 43, 2019-2026.	4.0	24
63	Drivers of abrupt Holocene shifts in West Antarctic ice stream direction determined from combined ice sheet modelling and geologic signatures. Antarctic Science, 2014, 26, 674-686.	0.9	22
64	Geometry and dynamics of an East Antarctic Ice Sheet outlet glacier, under past and present climates. Journal of Geophysical Research, 2011, 116, .	3.3	21
65	The influence of Antarctic subglacial volcanism on the global iron cycle during the Last Glacial Maximum. Nature Communications, 2017, 8, 15425.	12.8	21
66	The last glaciation of shetland, north atlantic. Geografiska Annaler, Series A: Physical Geography, 2008, 90, 37-53.	1.5	20
67	Mass balance, flow and subglacial processes of a modelled Younger Dryas ice cap in Scotland. Journal of Glaciology, 2009, 55, 32-42.	2.2	20
68	Southern Ocean carbon sink enhanced by sea-ice feedbacks at the Antarctic Cold Reversal. Nature Geoscience, 2020, 13, 489-497.	12.9	20
69	Tipping elements and amplified polar warming during the Last Interglacial. Quaternary Science Reviews, 2020, 233, 106222.	3.0	20
70	The last <scp>W</scp> elsh <scp>I</scp> ce <scp>C</scp> ap: Part 1 – Modelling its evolution, sensitivity and associated climate. Boreas, 2013, 42, 471-490.	2.4	19
71	Geologic controls on ice sheet sensitivity to deglacial climate forcing in the Ross Embayment, Antarctica. Quaternary Science Advances, 2020, 1, 100002.	1.9	19
72	Longâ€ŧerm projections of seaâ€ŀevel rise from ice sheets. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11, e634.	8.1	19

#	Article	IF	CITATIONS
73	8000 years of North Atlantic storminess reconstructed from a Scottish peat record: implications for Holocene atmospheric circulation patterns in Western Europe. Journal of Quaternary Science, 2017, 32, 1075-1084.	2.1	18
74	Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat. Climate of the Past, 2021, 17, 1-19.	3.4	18
75	The Loch Lomond Stadial glaciation south of Rannoch Moor: New evidence and palaeoglaciological insights. Scottish Geographical Journal, 2006, 122, 326-343.	1,1	17
76	Lichenometry on adelaide island, antarctic peninsula: sizeâ€frequency studies, growth rates and snowpatches. Geografiska Annaler, Series A: Physical Geography, 2010, 92, 111-124.	1.5	17
77	The last <scp>W</scp> elsh <scp>I</scp> ce <scp>C</scp> ap: Part 2 – Dynamics of a topographically controlled icecap. Boreas, 2013, 42, 491-510.	2.4	17
78	Selective erosion beneath the Antarctic Peninsula Ice Sheet during LGM retreat. Antarctic Science, 2014, 26, 698-707.	0.9	17
79	The influence of emissions scenarios on future Antarctic ice loss is unlikely to emerge this century. Communications Earth & Environment, 2021, 2, .	6.8	17
80	Glaci-tectonic deformation of proglacial lake sediments in the Cairngorm Mountains. Scottish Journal of Geology, 2002, 38, 127-136.	0.1	16
81	The deglacial history of NW Alexander Island, Antarctica, from surface exposure dating. Quaternary Research, 2012, 77, 273-280.	1.7	16
82	Grounding-zone ice thickness from InSAR: Inverse modelling of tidal elastic bending. Journal of Glaciology, 2014, 60, 526-536.	2.2	16
83	Cosmogenic nuclides constrain surface fluctuations of an East Antarctic outlet glacier since the Pliocene. Earth and Planetary Science Letters, 2017, 480, 75-86.	4.4	16
84	Pleistocene glacial history of the New Zealand subantarctic islands. Climate of the Past, 2019, 15, 423-448.	3.4	16
85	Sedimentology, stratigraphy, and glacier dynamics, western scottish Highlands. Quaternary Research, 2007, 68, 79-95.	1.7	15
86	Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial. Nature Communications, 2017, 8, 520.	12.8	15
87	Deglacial evolution of regional Antarctic climate and Southern Ocean conditions in transient climate simulations. Climate of the Past, 2019, 15, 189-215.	3.4	14
88	Southern Ocean temperature records and ice-sheet models demonstrate rapid Antarctic ice sheet retreat under low atmospheric CO2 during Marine Isotope Stage 31. Quaternary Science Reviews, 2020, 228, 106069.	3.0	14
89	The influence of continental shelf bathymetry on Antarctic Ice Sheet response to climate forcing. Global and Planetary Change, 2016, 142, 87-95.	3.5	13
90	Morphology and Significance of Transverse Ridges (De Geer Moraines) Adjacent to the Moray Firth, NE Scotland. Scottish Geographical Journal, 2007, 123, 257-270.	1.1	10

#	Article	IF	Citations
91	Discussion on a revised model for the last deglaciation of eastern Scotland ⟨b⟩ ⟨i⟩Journal⟨ i⟩ ⟨ b⟩, Vol. 164, 2007, 313–316. Journal of the Geological Society, 2007, 164, 1261-1263.	2.1	10
92	Ocean-forced evolution of the Amundsen Sea catchment, West Antarctica, by 2100. Cryosphere, 2020, 14, 1245-1258.	3.9	10
93	Retreat of the Antarctic Ice Sheet During the Last Interglaciation and Implications for Future Change. Geophysical Research Letters, 2021, 48, e2021GL094513.	4.0	10
94	Decadal-scale onset and termination of Antarctic ice-mass loss during the last deglaciation. Nature Communications, 2021, 12, 6683.	12.8	10
95	A palaeo-ice stream of the British Ice Sheet in eastern Scotland. Boreas, 2008, 35, 231-243.	2.4	7
96	Evaluating Younger Dryas glacier reconstructions in part of the western Scottish Highlands: a combined empirical and theoretical approach. Boreas, 2005, 34, 274-286.	2.4	6
97	Reprint of: Late Neogene climate and glacial history of the Southern Victoria Land coast from integrated drill core, seismic and outcrop data. Global and Planetary Change, 2012, 96-97, 157-180.	3.5	6
98	Basal conditions of two Transantarctic Mountains outlet glaciers from observation-constrained diagnostic modelling. Journal of Glaciology, 2014, 60, 855-866.	2.2	6
99	The Y ounger D ryas glaciation in the southeastern M onadhliath M ountains, S cotland: glacier reconstruction and palaeoclimate implications. Boreas, 2012, 41, 614-628.	2.4	5
100	Past and present dynamics of Skelton Glacier, Transantarctic Mountains. Antarctic Science, 2016, 28, 371-386.	0.9	5
101	Dynamics and palaeoclimatic significance of a Loch Lomond Stadial glacier: Coire Ardair, Creag Meagaidh, Western Highlands, Scotland. Proceedings of the Geologists Association, 2017, 128, 54-66.	1.1	5
102	Advances in numerical modelling of the Antarctic ice sheet. , 2022, , 199-218.		5
103	Antarctic environmental change and ice sheet evolution through the Miocene to Pliocene – a perspective from the Ross Sea and George V to Wilkes Land Coasts. , 2022, , 389-521.		5
104	Lateglacial–Holocene shoreface progradation offshore eastern Scotland: a response to climatic and coastal hydrographic change. Boreas, 2009, 38, 292-314.	2.4	4
105	Is the marine ice cliff hypothesis collapsing?. Science, 2021, 372, 1266-1267.	12.6	4
106	Multiâ€Century Impacts of Ice Sheet Retreat on Sea Level and Ocean Tides in Hudson Bay. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015104.	2.6	3
107	Subglacial Water Flow Over an Antarctic Palaeoâ€lce Stream Bed. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	2
108	Corrigendum to "Sedimentology, stratigraphy, and glacier dynamics, western Scottish Highlands― [Quaternary Research 68 (2007) 79–95]. Quaternary Research, 2007, 68, 456-457.	1.7	1