James M Galloway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1281694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science, 2008, 320, 889-892.	12.6	5,246
2	Nitrogen Cycles: Past, Present, and Future. Biogeochemistry, 2004, 70, 153-226.	3.5	4,203
3	Clobal Biodiversity: Indicators of Recent Declines. Science, 2010, 328, 1164-1168.	12.6	3,642
4	How a century of ammonia synthesis changed the world. Nature Geoscience, 2008, 1, 636-639.	12.9	2,909
5	An Earth-system perspective of the global nitrogen cycle. Nature, 2008, 451, 293-296.	27.8	2,602
6	The Nitrogen Cascade. BioScience, 2003, 53, 341.	4.9	2,278
7	Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 2010, 20, 30-59.	3.8	2,063
8	The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles, 1991, 5, 193-259.	4.9	1,478
9	The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130164.	4.0	1,114
10	Reactive Nitrogen and The World: 200 Years of Change. Ambio, 2002, 31, 64-71.	5.5	1,107
11	Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean. Science, 2008, 320, 893-897.	12.6	964
12	Nitrogen fixation: Anthropogenic enhancement-environmental response. Global Biogeochemical Cycles, 1995, 9, 235-252.	4.9	854
13	Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	846
14	Modeling the Effects of Acid Deposition: Assessment of a Lumped Parameter Model of Soil Water and Streamwater Chemistry. Water Resources Research, 1985, 21, 51-63.	4.2	677
15	The composition of precipitation in remote areas of the world. Journal of Geophysical Research, 1982, 87, 8771-8786.	3.3	674
16	Seaâ€salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research, 1986, 91, 6647-6658.	3.3	671
17	Consequences of human modification of the global nitrogen cycle. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130116.	4.0	635
18	Reduced nitrogen in ecology and the environment. Environmental Pollution, 2007, 150, 140-149.	7.5	414

#	Article	IF	CITATIONS
19	Steep declines in atmospheric base cations in regions of Europe and North America. Nature, 1994, 367, 351-354.	27.8	385
20	A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environmental Development, 2012, 1, 40-66.	4.1	372
21	The global nitrogen cycle: changes and consequences. Environmental Pollution, 1998, 102, 15-24.	7.5	357
22	Trace metals in atmospheric deposition: A review and assessment. Atmospheric Environment, 1982, 16, 1677-1700.	1.0	354
23	Measurement of weak organic acidity in precipitation from remote areas of the world. Journal of Geophysical Research, 1983, 88, 5122-5130.	3.3	352
24	Acid Rain. Scientific American, 1979, 241, 43-51.	1.0	338
25	Nitrogen Use in the United States from 1961–2000 and Potential Future Trends. Ambio, 2002, 31, 88-96.	5.5	334
26	AGRICULTURE: Losing the Links Between Livestock and Land. Science, 2005, 310, 1621-1622.	12.6	315
27	Evidence of inorganic chlorine gases other than hydrogen chloride in marine surface air. Geophysical Research Letters, 1993, 20, 699-702.	4.0	311
28	Acid deposition: Perspectives in time and space. Water, Air, and Soil Pollution, 1995, 85, 15-24.	2.4	279
29	Meeting future food demand with current agricultural resources. Global Environmental Change, 2016, 39, 125-132.	7.8	277
30	Reducing China's fertilizer use by increasing farm size. Global Environmental Change, 2016, 41, 26-32.	7.8	257
31	Aerosol pH in the marine boundary layer. Journal of Aerosol Science, 1998, 29, 339-356.	3.8	246
32	Pre-industrial and contemporary fluxes of nitrogen through rivers: a global assessment based on typology. Biogeochemistry, 2004, 68, 71-105.	3.5	245
33	The geochemical cycling of reactive chlorine through the marine troposphere. Global Biogeochemical Cycles, 1990, 4, 407-430.	4.9	240
34	Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry, 2014, 118, 225-241.	3.5	240
35	Riverine nitrogen export from the continents to the coasts. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	239
36	Acid Precipitation: Natural Versus Anthropogenic Components. Science, 1984, 226, 829-831.	12.6	238

#	Article	IF	CITATIONS
37	Organic acidity in precipitation of North America. Atmospheric Environment, 1984, 18, 2491-2497.	1.0	236
38	Reactive nitrogen in the environment and its effect on climate change. Current Opinion in Environmental Sustainability, 2011, 3, 281-290.	6.3	224
39	Nitrogen footprints: past, present and future. Environmental Research Letters, 2014, 9, 115003.	5.2	222
40	Sources of nitrogen in wet deposition to the Chesapeake Bay region. Atmospheric Environment, 1998, 32, 2453-2465.	4.1	210
41	Considerations regarding sources for formic and acetic acids in the troposphere. Journal of Geophysical Research, 1986, 91, 14466-14474.	3.3	202
42	A chronology of human understanding of the nitrogen cycle . Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130120.	4.0	202
43	Acid Precipitation in the Northeastern United States: pH and Acidity. Science, 1976, 194, 722-724.	12.6	198
44	Title is missing!. Biogeochemistry, 2001, 53, 269-306.	3.5	197
45	Tracking Progress Toward the 2010 Biodiversity Target and Beyond. Science, 2009, 325, 1503-1504.	12.6	194
46	Acid Rain: China, United States, and a Remote Area. Science, 1987, 236, 1559-1562.	12.6	193
47	Cloudwater chemistry from ten sites in North America. Environmental Science & Technology, 1988, 22, 1018-1026.	10.0	179
48	Impacts of atmospheric nutrient deposition on marine productivity: Roles of nitrogen, phosphorus, and iron. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	177
49	Calibration of collection procedures for the determination of precipitation chemistry. Water, Air, and Soil Pollution, 1976, 6, 241-258.	2.4	176
50	Acid precipitation: The importance of nitric acid. Atmospheric Environment, 1981, 15, 1081-1085.	1.0	172
51	Effects of global change during the 21st century on the nitrogen cycle. Atmospheric Chemistry and Physics, 2015, 15, 13849-13893.	4.9	168
52	An atmospheric sulfur budget for eastern North America. Atmospheric Environment, 1980, 14, 409-417.	1.0	166
53	International Trade in Meat: The Tip of the Pork Chop. Ambio, 2007, 36, 622-629.	5.5	161
54	Nitrogen emissions along global livestock supply chains. Nature Food, 2020, 1, 437-446.	14.0	160

#	Article	IF	CITATIONS
55	Reactive Nitrogen: Too Much of a Good Thing?. Ambio, 2002, 31, 60-63.	5.5	159
56	Freshwater acidification from atmospheric deposition of sulfuric acid: A conceptual model. Environmental Science & Technology, 1983, 17, 541A-545A.	10.0	151
57	The collection of precipitation for chemical analysis. Tellus, 2022, 30, 71.	0.8	150
58	Time scales of catchment acidification. A quantitative model for estimating freshwater acidification. Environmental Science & Technology, 1985, 19, 1144-1149.	10.0	148
59	Environmental impact food labels combining carbon, nitrogen, and water footprints. Food Policy, 2016, 61, 213-223.	6.0	144
60	The composition and deposition of organic carbon in precipitation. Tellus, Series B: Chemical and Physical Meteorology, 1983, 35B, 16-24.	1.6	143
61	Chemistry of precipitation from a remote, terrestrial site in Australia. Journal of Geophysical Research, 1987, 92, 13299-13314.	3.3	143
62	The biogeochemical cycling of formic and acetic acids through the troposphere: an overview of current understanding. Tellus, Series B: Chemical and Physical Meteorology, 1988, 40B, 322-334.	1.6	141
63	Episodic atmospheric nitrogen deposition to oligotrophic oceans. Nature, 1992, 357, 397-399.	27.8	132
64	Temporal patterns of nitrogen leakage from mid-Appalachian forested watersheds: Role of insect defoliation. Water Resources Research, 1998, 34, 2005-2016.	4.2	131
65	Heterogeneous sulfur conversion in sea-salt aerosol particles: the role of aerosol water content and size distribution. Atmospheric Environment Part A General Topics, 1991, 25, 1479-1487.	1.3	130
66	Changes in wet nitrogen deposition in the United States between 1985 and 2012. Environmental Research Letters, 2014, 9, 095004.	5.2	130
67	MODELING SOIL ORGANIC CARBON CHANGE IN CROPLANDS OF CHINA. , 2003, 13, 327-336.		122
68	Nitrogen Footprint in China: Food, Energy, and Nonfood Goods. Environmental Science & Technology, 2013, 47, 9217-9224.	10.0	122
69	A World of Cobenefits: Solving the Global Nitrogen Challenge. Earth's Future, 2019, 7, 865-872.	6.3	122
70	The environmental cost of subsistence: Optimizing diets to minimize footprints. Science of the Total Environment, 2016, 553, 120-127.	8.0	121
71	Marine biogenic and anthropogenic contributions to non-sea-salt sulfate in the marine boundary layer over the North Atlantic Ocean. Journal of Geophysical Research, 2002, 107, AAC 3-1.	3.3	119
72	The temporal and spatial variability of scavenging ratios for NSS sulfate, nitrate, methanesulfonate and sodium in the Atmosphere over the North Atalantic Ocean. Atmospheric Environment Part A General Topics, 1993, 27, 235-250.	1.3	114

#	Article	IF	CITATIONS
73	Acid rain on Bermuda. Nature, 1982, 297, 55-57.	27.8	111
74	Significance of atmospheric-derived fixed nitrogen on productivity of the Sargasso Sea. Nature, 1986, 320, 158-160.	27.8	108
75	Bacterial utilization of formic and acetic acid in rainwater. Atmospheric Environment, 1987, 21, 2397-2402.	1.0	108
76	A study of the sulfur cycle in the Antarctic marine boundary layer. Journal of Geophysical Research, 1989, 94, 9818-9830.	3.3	104
77	Atmospheric enhancement of metal deposition in Adirondack lake sediments1. Limnology and Oceanography, 1979, 24, 427-433.	3.1	103
78	The composition of precipitation on Amsterdam Island, Indian Ocean. Atmospheric Environment, 1984, 18, 2649-2656.	1.0	103
79	Nitrogen footprints: Regional realities and options to reduce nitrogen loss to the environment. Ambio, 2017, 46, 129-142.	5.5	102
80	A regional acidic cloud/fog water event in the eastern United States. Nature, 1986, 319, 657-658.	27.8	101
81	Episodic inputs of atmospheric nitrogen to the Sargasso Sea: Contributions to new production and phytoplankton blooms. Global Biogeochemical Cycles, 1993, 7, 339-351.	4.9	99
82	Measurement technique for inorganic chlorine gases in the marine boundary layer. Environmental Science & Technology, 1993, 27, 866-874.	10.0	97
83	An intercomparison of measurement systems for vapor and particulate phase concentrations of formic and acetic acids. Journal of Geophysical Research, 1989, 94, 6457-6471.	3.3	96
84	Organic nitrogen in precipitation at the mid-Atlantic U.S. Coast—methods evaluation and preliminary measurements. Atmospheric Environment, 1998, 32, 1719-1728.	4.1	94
85	The nitrogen footprint of food products and general consumption patterns in Austria. Food Policy, 2014, 49, 128-136.	6.0	94
86	Covariations in oceanic dimethyl sulfide, its oxidation products and rain acidity at Amsterdam Island in the Southern Indian Ocean. Journal of Atmospheric Chemistry, 1992, 15, 39-53.	3.2	93
87	Acid precipitation: Measurement of pH and acidity1. Limnology and Oceanography, 1979, 24, 1161-1165.	3.1	91
88	Air pollution success stories in the United States: The value of long-term observations. Environmental Science and Policy, 2018, 84, 69-73.	4.9	91
89	The chemistry of western Atlantic precipitation at the midâ€Atlantic coast and on Bermuda. Journal of Geophysical Research, 1982, 87, 11013-11018.	3.3	87
90	Change in the acid-base status of an appalachian mountain catchment following forest defoliation by the gypsy moth. Water, Air, and Soil Pollution, 1995, 85, 535-540.	2.4	87

#	Article	IF	CITATIONS
91	The collection of precipitation for chemical analysis. Tellus, 1978, 30, 71-82.	0.8	85
92	Watoxâ€86 overview and western North Atlantic Ocean S and N atmospheric budgets. Global Biogeochemical Cycles, 1987, 1, 261-281.	4.9	85
93	Modeling the Effects of Acid Deposition: Control of Longâ€Term Sulfate Dynamics by Soil Sulfate Adsorption. Water Resources Research, 1986, 22, 1283-1291.	4.2	83
94	Quantifying the relationship between atmospheric transport and the chemical composition of precipitation on Bermuda. Tellus, Series B: Chemical and Physical Meteorology, 1988, 40B, 463-479.	1.6	83
95	Organic nitrogen in precipitation over Eastern North America. Atmospheric Environment, 2002, 36, 4529-4540.	4.1	83
96	N deposition as a threat to the World's protected areas under the Convention on Biological Diversity. Environmental Pollution, 2011, 159, 2280-2288.	7.5	83
97	The composition of western Atlantic precipitation using shipboard collectors. Journal of Geophysical Research, 1983, 88, 10859-10864.	3.3	82
98	The Effects of Precipitation on Aquatic and Terrestrial Ecosystems: A Proposed Precipitation Chemistry Network. Journal of the Air Pollution Control Association, 1978, 28, 229-235.	0.5	78
99	Amine nitrogen in the atmospheric environment over the North Atlantic Ocean. Global Biogeochemical Cycles, 1990, 4, 309-333.	4.9	77
100	Acidification of the World: Natural and Anthropogenic. Water, Air, and Soil Pollution, 2001, 130, 17-24.	2.4	77
101	Re-estimating NH ₃ Emissions from Chinese Cropland by a New Nonlinear Model. Environmental Science & Technology, 2016, 50, 564-572.	10.0	77
102	The flux of s and n eastward from north America. Atmospheric Environment, 1984, 18, 2595-2607.	1.0	75
103	First approach to the Japanese nitrogen footprint model to predict the loss of nitrogen to the environment. Environmental Research Letters, 2014, 9, 115013.	5.2	75
104	A systems approach to assessing environmental and economic effects of food loss and waste interventions in the United States. Science of the Total Environment, 2019, 685, 1240-1254.	8.0	75
105	Carbon Dioxide Dynamics in Acid Forest Soils in Shenandoah National Park, Virginia. Soil Science Society of America Journal, 1990, 54, 252-257.	2.2	73
106	Intentional versus unintentional nitrogen use in the United States: trends, efficiency and implications. Biogeochemistry, 2013, 114, 11-23.	3.5	72
107	The composition and deposition of organic carbon in precipitation. Tellus, Series B: Chemical and Physical Meteorology, 2022, 35, 16.	1.6	70
108	The flux and isotopic composition of reduced and total nitrogen in Bermuda rain. Marine Chemistry, 2010, 120, 83-89.	2.3	66

#	Article	IF	CITATIONS
109	A post-Kyoto partner: Considering the stratospheric ozone regime as a tool to manage nitrous oxide. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4451-4457.	7.1	66
110	Processes controlling the composition of precipitation at a remote southern hemispheric location: Torres del Paine National Park, Chile. Journal of Geophysical Research, 1996, 101, 6883-6897.	3.3	64
111	The role of industrial nitrogen in the global nitrogen biogeochemical cycle. Scientific Reports, 2013, 3, 2579.	3.3	64
112	Quantifying the relationship between atmospheric transport and the chemical composition of precipitation on Bermuda. Tellus, Series B: Chemical and Physical Meteorology, 1988, 40, 463-479.	1.6	64
113	Processes and Causes of Lake Acidification during Spring Snowmelt in the West-Central Adirondack Mountains, New York. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44, 1595-1602.	1.4	63
114	A comparison of sulfurâ€free and ambient air enclosure techniques for measuring the exchange of reduced sulfur gases between soils and the atmosphere. Journal of Geophysical Research, 1991, 96, 15427-15437.	3.3	63
115	Personal nitrogen footprint tool for the United Kingdom. Environmental Sciences: Processes and Impacts, 2014, 16, 1563-1569.	3.5	62
116	An Integrated Approach to a Nitrogen Use Efficiency (NUE) Indicator for the Food Production–Consumption Chain. Sustainability, 2018, 10, 925.	3.2	62
117	The influence of crop and chemical fertilizer combinations on greenhouse gas emissions: A partial life-cycle assessment of fertilizer production and use in China. Resources, Conservation and Recycling, 2021, 168, 105303.	10.8	62
118	Alteration of trace metal geochemical cycles due to the marine discharge of wastewater. Geochimica Et Cosmochimica Acta, 1979, 43, 207-218.	3.9	58
119	Ocean urea fertilization for carbon credits poses high ecological risks. Marine Pollution Bulletin, 2008, 56, 1049-1056.	5.0	58
120	Phase partitioning and dry deposition of atmospheric nitrogen at the mid-Atlantic U.S. coast. Journal of Geophysical Research, 2003, 108, .	3.3	57
121	Effect of Atmospheric Sulfur on the Composition of Three Adirondack Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 1983, 40, 799-806.	1.4	55
122	Water-soluble primary amine compounds in rural continental precipitation. Atmospheric Environment Part A General Topics, 1992, 26, 1005-1018.	1.3	55
123	The Human Creation and Use of Reactive Nitrogen: A Global and Regional Perspective. Annual Review of Environment and Resources, 2021, 46, 255-288.	13.4	54
124	Modeling the Effects of Acid Deposition: Uncertainty and Spatial Variability in Estimation of Longâ€Term Sulfate Dynamics in a Region. Water Resources Research, 1986, 22, 1293-1302.	4.2	52
125	The biogeochemical cycling of formic and acetic acids through the troposphere: an overview of current understanding. Tellus, Series B: Chemical and Physical Meteorology, 1988, 40, 322-334.	1.6	52

#	Article	IF	CITATIONS
127	Beef and coal are key drivers of Australia's high nitrogen footprint. Scientific Reports, 2016, 6, 39644.	3.3	51
128	Carboxylic acids in clouds at a high-elevation forested site in central Virginia. Journal of Geophysical Research, 1995, 100, 9345.	3.3	50
129	Surface water chemistry in the ILWAS basins. Water, Air, and Soil Pollution, 1985, 26, 403-423.	2.4	47
130	Nitrogen mobilization in the United States of America and the People's Republic of China. Atmospheric Environment, 1996, 30, 1551-1561.	4.1	46
131	Comparison of the ARL/ATAD constant level and the NCAR isentropic trajectory analyses for selected case studies. Atmospheric Environment, 1985, 19, 47-63.	1.0	45
132	The Deposition of Sulfur and Nitrogen from the Remote Atmosphere Background Paper. , 1985, , 143-175.		45
133	Toward Institutional Sustainability: A Nitrogen Footprint Model for a University. Sustainability, 2013, 6, 211-219.	0.7	44
134	Toward a nitrogen footprint calculator for Tanzania. Environmental Research Letters, 2017, 12, 034016.	5.2	44
135	How China's nitrogen footprint of food has changed from 1961 to 2010. Environmental Research Letters, 2017, 12, 104006.	5.2	44
136	Differences between barites of marine and continental origins. Geochimica Et Cosmochimica Acta, 1969, 33, 287-289.	3.9	41
137	Effects of acid precipitation. Environmental Science & amp; Technology, 1982, 16, 162A-169A.	10.0	41
138	Lake acidification: Its effect on lead in the sediment of two Adirondack lakes1,1. Limnology and Oceanography, 1982, 27, 163-167.	3.1	40
139	Changes in the chemical composition of stream water in two catchments in the Shenandoah National Park, Virginia, in response to atmospheric deposition of sulfur. Water Resources Research, 1989, 25, 2091-2099.	4.2	40
140	Reflections on 200 years of Nitrogen, 20 years later. Ambio, 2021, 50, 745-749.	5.5	40
141	Atmospheric Wet Deposition in Remote Regions: Benchmarks for Environmental Change. Journals of the Atmospheric Sciences, 2015, 72, 2947-2978.	1.7	36
142	Origin of air masses producing acid precipitation at Ithaca, New York: A preliminary report. Geophysical Research Letters, 1978, 5, 757-760.	4.0	34
143	Nitrogen-neutrality: a step towards sustainability. Environmental Research Letters, 2014, 9, 115001.	5.2	34
144	Measurements of dimethyl sulfide oxidation products in the summertime North Atlantic marine boundary layer. Global Biogeochemical Cycles, 1990, 4, 367-379.	4.9	33

#	Article	IF	CITATIONS
145	Nitrogen: the historical progression from ignorance to knowledge, with a view to future solutions. Soil Research, 2017, 55, 417.	1.1	33
146	The relationship between dimethyl sulfide and particulate sulfate in the mid-atlantic ocean atmosphere. Atmospheric Environment, 1989, 23, 139-147.	1.0	32
147	Hydrogen ion speciation in the acid precipitation of the northeastern United States. Water, Air, and Soil Pollution, 1976, 6, 423-433.	2.4	31
148	Air-Sea Exchange of Sulphur and Nitrogen and Their Interaction in the Marine Atmosphere. , 1993, , 259-281.		31
149	An analysis of precipitation chemistry data from Alaska. Atmospheric Environment, 1985, 19, 651-657.	1.0	30
150	Acid Precipitation: Strong and Weak Acids. Science, 1976, 194, 643-645.	12.6	29
151	Acidification of native brook trout streams in Virginia. Water Resources Research, 1989, 25, 1367-1377.	4.2	29
152	Volatile inorganic Cl in surface air over eastern North America. Geophysical Research Letters, 1995, 22, 3513-3516.	4.0	29
153	Are Brook Trout Streams in Western Virginia and Shenandoah National Park Recovering from Acidification?. Environmental Science & amp; Technology, 2004, 38, 4091-4096.	10.0	29
154	Distribution of Pb between sediments and pore water in Woods Lake, Adirondack State Park, New York, U.S.A Applied Geochemistry, 1993, 8, 51-65.	3.0	27
155	Estimating environmentally relevant fixed nitrogen demand in the 21st century. Climatic Change, 2013, 120, 889-901.	3.6	27
156	Toward a Generic Analytical Framework for Sustainable Nitrogen Management: Application for China. Environmental Science & Technology, 2019, 53, 1109-1118.	10.0	27
157	Sulfur dioxide over the western North Atlantic Ocean during GCE/CASE/WATOX. Global Biogeochemical Cycles, 1990, 4, 381-393.	4.9	26
158	Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans. Atmospheric Chemistry and Physics, 2017, 17, 8189-8210.	4.9	26
159	Acidification of surface waters in two areas of the Eastern United States. Water, Air, and Soil Pollution, 1981, 16, 277-285.	2.4	25
160	ANTHROPOGENIC MOBILIZATION OF SULPHUR AND NITROGEN: Immediate and Delayed Consequences. Annual Review of Environment and Resources, 1996, 21, 261-292.	1.2	25
161	Reactive nitrogen spatial intensity (NrSI): A new indicator for environmental sustainability. Global Environmental Change, 2018, 52, 101-107.	7.8	25
162	Overview of the 1988 GCE/CASE/WATOX Studies of biogeochemical cycles in the North Atlantic region. Global Biogeochemical Cycles, 1990, 4, 121-131.	4.9	24

#	Article	IF	CITATIONS
163	The Environmental Reach of Asia. Annual Review of Environment and Resources, 2008, 33, 461-481.	13.4	24
164	The Nitrogen Footprint Tool Network: A Multi-Institution Program To Reduce Nitrogen Pollution. Sustainability, 2017, 10, 79-88.	0.7	23
165	Sulfur and reactive nitrogen oxide fluxes in the North Atlantic atmosphere. Global Biogeochemical Cycles, 1994, 8, 481-493.	4.9	21
166	Atmospheric Nitrogen Deposition to Coastal Estuaries and their Watersheds. Coastal and Estuarine Studies, 2013, , 53-76.	0.4	21
167	Sulfur in the western North Atlantic Ocean atmosphere: Results from a summer 1988 ship/aircraft experiment. Clobal Biogeochemical Cycles, 1990, 4, 349-365.	4.9	20
168	The ?shenandoah national park: Fish in sensitive habitats? (SNP: FISH) project. An integrated assessment of fish community responses to stream acidification. Water, Air, and Soil Pollution, 1995, 85, 309-314.	2.4	20
169	An Integrated Tool for Calculating and Reducing Institution Carbon and Nitrogen Footprints. Sustainability, 2017, 10, 140-148.	0.7	20
170	Standard error calculations for non-seasalt constituents in marine precipitation. Water, Air, and Soil Pollution, 1988, 42, 87.	2.4	19
171	A technique using highâ€flow, dichotomous filter packs for measuring major atmospheric chemical constituents. Global Biogeochemical Cycles, 1990, 4, 151-163.	4.9	19
172	Comment on "Aqueous phase chemical processes in deliquescent seaâ€salt aerosols: A mechanism that couples the atmospheric cycles of S and sea salt―by W. L. Chameides and A. W. Stelson. Journal of Geophysical Research, 1993, 98, 9047-9049.	3.3	19
173	Peer Reviewed: East Central Europe: An Environment in Transition. Environmental Science & Technology, 1997, 31, 412A-416A.	10.0	19
174	Long-term trends in aerosol and precipitation composition over the western North Atlantic Ocean at Bermuda. Atmospheric Chemistry and Physics, 2014, 14, 8119-8135.	4.9	19
175	Effects of acid precipitation. Environmental Science & amp; Technology, 1982, 16, 162-169.	10.0	19
176	The U.S. consumer phosphorus footprint: where do nitrogen and phosphorus diverge?. Environmental Research Letters, 2020, 15, 105022.	5.2	19
177	Roles of sulfate adsorption and base cation supply in controlling the chemical response of streams of western Virginia to reduced acid deposition. Biogeochemistry, 2013, 116, 119-130.	3.5	18
178	"l'll try the veggie burgerâ€: Increasing purchases of sustainable foods with information about sustainability and taste. Appetite, 2020, 155, 104842.	3.7	18
179	Gran's titrations: Inherent errors in measuring the acidity of precipitation. Atmospheric Environment, 1985, 19, 199-202.	1.0	17
180	Estimating catchment water quality response to acid deposition using mathematical models of soil ion exchange processes. Geoderma, 1986, 38, 77-95.	5.1	17

#	Article	IF	CITATIONS
181	Declines in dissolved silica concentrations in western Virginia streams (1988–2003): Gypsy moth defoliation stimulates diatoms?. Journal of Geophysical Research, 2007, 112, .	3.3	17
182	Improving the social cost of nitrous oxide. Nature Climate Change, 2021, 11, 1008-1010.	18.8	16
183	The nitrogen footprint of organic food in the United States. Environmental Research Letters, 2020, 15, 045004.	5.2	15
184	Inorganic nitrogen over the western North Atlantic Ocean. Global Biogeochemical Cycles, 1990, 4, 267-278.	4.9	14
185	Managing a forgotten greenhouse gas under existing U.S. law: An interdisciplinary analysis. Environmental Science and Policy, 2017, 67, 44-51.	4.9	14
186	Assessing the Social and Environmental Costs of Institution Nitrogen Footprints. Sustainability, 2017, 10, 114-122.	0.7	14
187	The nitrogen footprint for an Australian university: Institutional change for corporate sustainability. Journal of Cleaner Production, 2018, 197, 534-541.	9.3	14
188	AN examination of SOx, NOx and trace metal washout ratios over the western Atlantic ocean. Atmospheric Environment, 1987, 21, 2623-2628.	1.0	13
189	Reactive Nitrogen. Ambio, 2002, 31, 59-59.	5.5	13
190	Mountains of Western Virginia. , 1991, , 297-318.		13
191	Chemical Concentrations in Cloud Water from Four Sites in the Eastern United States. , 1988, , 345-357.		13
192	A note on acid rain in an Amazon rainforest. Tellus, Series B: Chemical and Physical Meteorology, 1984, 36B, 137-138.	1.6	12
193	Local influences on the composition of precipitation on Bermuda. Tellus, Series B: Chemical and Physical Meteorology, 1988, 40B, 178-188.	1.6	12
194	Watershed base-cation cycle dynamics modeled over forest regrowth in a Central Appalachian ecosystem. Water, Air, and Soil Pollution, 1996, 89, 1-22.	2.4	12
195	Flow climatology for physicochemical properties of dichotomous aerosol over the western North Atlantic Ocean at Bermuda. Atmospheric Chemistry and Physics, 2014, 14, 691-717.	4.9	12
196	Stream geochemical response to reductions in acid deposition in headwater streams: Chronic versus episodic acidification recovery. Hydrological Processes, 2019, 33, 512-526.	2.6	12
197	Eastward sulfur flux from the Northeastern United States. Atmospheric Environment, 1988, 22, 1847-1854.	1.0	11
198	Local influences on the composition of precipitation on Bermuda. Tellus, Series B: Chemical and Physical Meteorology, 2022, 40, 178.	1.6	11

#	Article	IF	CITATIONS
199	Effects of Disturbance on Nitrogen Export from Forested Lands of the Chesapeake Bay Watershed. Environmental Monitoring and Assessment, 2000, 63, 187-197.	2.7	10
200	The Effects of Atmospheric Nitrogen Deposition on Terrestrial and Freshwater Biodiversity. , 2014, , 465-480.		10
201	WATOX-85: An aircraft and ground sampling program to determine the transport of trace gases and aerosols across the Western Atlantic Ocean. Atmospheric Environment, 1988, 22, 2345-2360.	1.0	9
202	The global nitrogen cycle: changes and consequences. , 1998, , 15-24.		9
203	Future scenarios of nitrogen in Europe. , 2011, , 551-569.		9
204	Your feet's too big. Nature Geoscience, 2016, 9, 97-98.	12.9	9
205	Ancient water supports today's energy needs. Earth's Future, 2017, 5, 515-519.	6.3	9
206	The Western Atlantic Ocean Experiment. ACS Symposium Series, 1987, , 39-55.	0.5	8
207	Why future nitrogen research needs the social sciences. Current Opinion in Environmental Sustainability, 2020, 47, 54-60.	6.3	7
208	A community nitrogen footprint analysis of Baltimore City, Maryland. Environmental Research Letters, 2020, 15, 075007.	5.2	7
209	The Intercontinental Transport of Sulfur and Nitrogen. , 1990, , 87-104.		6
210	Application of henriksen's ?acidification indicator? and ?predictor nomograph? to two adirondack lakes. Water, Air, and Soil Pollution, 1984, 22, 111.	2.4	5
211	A note on acid rain in an Amazon rainforest. Tellus, Series B: Chemical and Physical Meteorology, 2022, 36, 137.	1.6	5
212	Horizontal diffusion and new production in the Sargasso Sea. Global Biogeochemical Cycles, 1990, 4, 253-265.	4.9	5
213	Effects of wet deposition on optical properties of the atmosphere over Bermuda and Barbados. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	5
214	Comparing Institution Nitrogen Footprints: Metrics for Assessing and Tracking Environmental Impact. Sustainability, 2017, 10, 105-113.	0.7	5
215	Sustainable Pathways for Meeting Future Food Demand. , 2019, , 14-20.		5
216	Observed changes in chronic and episodic acidification in Virginia mountain streams in response to the Clean Air Act and amendments. Atmospheric Environment, 2021, 252, 118279.	4.1	5

#	Article	IF	CITATIONS
217	The Long-Range Transport of Sulfur and Nitrogen Compounds. , 1990, , 231-257.		5
218	Virtual Water as a Metric for Institutional Sustainability. Sustainability, 2017, 10, 237-245.	0.7	4
219	Difficulties in Measuring Wet and Dry Deposition on Forest Canopies and Soil Surfaces. , 1980, , 57-68.		4
220	Explanations for nitrogen decline. Science, 2022, 376, 1169-1170.	12.6	4
221	ES&T Views: Jekyll Island meeting report: James Galloway compares acid deposition in remote areas with that found in industrialized areas. Environmental Science & Technology, 1985, 19, 1157-1159.	10.0	3
222	Decreasing reactive nitrogen losses in organic agricultural systems. Organic Agriculture, 2021, 11, 217-223.	2.4	3
223	The impacts of stream acidification on fish assemblages: Assessing three decades of recovery in Shenandoah National Park. Global Ecology and Conservation, 2021, 26, e01386.	2.1	3
224	Background, Current status and the African Context of the International Nitrogen Initiative. , 2007, , 115-119.		3
225	The Deposition of Sulfur and Nitrogen from the Remote Atmosphere Working-Group Report. , 1985, , 177-200.		3
226	Defining System Boundaries of an Institution Nitrogen Footprint. Sustainability, 2017, 10, 123-130.	0.7	2
227	Reply [to "Comment on â€~Modeling the Effects of Acid Deposition: Assessment of a Lumped Parameter Model of Soil Water and Stream Water Chemistry' by B. J. Cosby et al.â€]. Water Resources Research, 1986, 22, 999-1000.	4.2	1
228	Watox-85: A preface. Atmospheric Environment, 1988, 22, 2343-2344.	1.0	1
229	Greenhouse Gas Footprints for Physicists. Physics Teacher, 2020, 58, 238-240.	0.3	1
230	Shenandoah Watershed <scp>Studyâ€Virginia</scp> Trout Stream Sensitivity Study (<scp>SWASâ€VTSSS</scp>): Stream water quality and hydrologic monitoring data for <scp>midâ€Appalachian</scp> headwater streams. Hydrological Processes, 2021, 35, e14164.	2.6	1
231	Jekyll Island meeting report. Environmental Science & Technology, 1985, 19, 904-907.	10.0	Ο
232	Relationship Between pH and Stream Water Total Mercury Concentrations in Shenandoah National Park. Water, Air, and Soil Pollution, 2009, 201, 233-238.	2.4	0
233	A tribute to John Raymond Freney (December 7, 1928–January 2, 2015). Environmental Development, 2015, 14, 2-3.	4.1	0
234	Footprints Make an Impression. Sustainability, 2017, 10, 71-73.	0.7	0

#	Article	IF	CITATIONS
235	Identifying and assessing effectiveness of alternative low-effort nitrogen footprint reductions in small research institutions. Environmental Research Letters, 2021, 16, 035014.	5.2	0
236	THE FLUX OF S AND N EASTWARD FROM NORTH AMERICA. , 1984, , 2595-2607.		0
237	Introducing the Nitrogen Footprint in SIMAP: A Review of Improvements in Nitrogen Footprint Methodology for Institutions. Sustainability and Climate Change, 2021, 14, 415-423.	0.3	0