
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1280993/publications.pdf Version: 2024-02-01

HEDVÃO CHNEIWEISS

#	Article	IF	CITATIONS
1	The flavonoid rutin and its aglycone quercetin modulate the microglia inflammatory profile improving antiglioma activity. Brain, Behavior, and Immunity, 2020, 85, 170-185.	4.1	65
2	The HIF1α/JMY pathway promotes glioblastoma stem-like cell invasiveness after irradiation. Scientific Reports, 2020, 10, 18742.	3.3	5
3	ERK-Mediated Loss of miR-199a-3p and Induction of EGR1 Act as a "Toggle Switch―of GBM Cell Dedifferentiation into NANOG- and OCT4-Positive Cells. Cancer Research, 2020, 80, 3236-3250.	0.9	18
4	Capture at the single cell level of metabolic modules distinguishing aggressive and indolent glioblastoma cells. Acta Neuropathologica Communications, 2019, 7, 155.	5.2	21
5	The oncolytic virus Delta-24-RGD elicits an antitumor effect in pediatric glioma and DIPG mouse models. Nature Communications, 2019, 10, 2235.	12.8	96
6	Genome Editing: Promoting Responsible Research. Pharmaceutical Medicine, 2019, 33, 187-191.	1.9	2
7	ALT cancer cells are specifically sensitive to lysine acetyl transferase inhibition. Oncotarget, 2019, 10, 773-784.	1.8	5
8	Could Failure in Preimplantation Genetic Diagnosis Justify Editing the Human Embryo Genome?. Cell Stem Cell, 2018, 22, 481-482.	11.1	33
9	Radiosensitization Effect of Talazoparib, a Parp Inhibitor, on Glioblastoma Stem Cells Exposed to Low and High Linear Energy Transfer Radiation. Scientific Reports, 2018, 8, 3664.	3.3	68
10	DOCK4 promotes loss of proliferation in glioblastoma progenitor cells through nuclear beta-catenin accumulation and subsequent miR-302-367 cluster expression. Oncogene, 2018, 37, 241-254.	5.9	24
11	Changes in chromatin state reveal ARNT2 at a node of a tumorigenic transcription factor signature driving glioblastoma cell aggressiveness. Acta Neuropathologica, 2018, 135, 267-283.	7.7	19
12	The tsunami named CRISPR/Cas9. Revue Neurologique, 2018, 174, 487-488.	1.5	0
13	WNK1 kinase and its partners Akt, SGK1 and NBC-family Na+/HCO3â^' cotransporters are potential therapeutic targets for glioblastoma stem-like cells linked to Bisacodyl signaling. Oncotarget, 2018, 9, 27197-27219.	1.8	5
14	Bisacodyl and its cytotoxic activity on human glioblastoma stem-like cells. Implication of inositol 1,4,5-triphosphate receptor dependent calcium signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1018-1027.	4.1	14
15	Cell-based therapy using miR-302-367 expressing cells represses glioblastoma growth. Cell Death and Disease, 2017, 8, e2713-e2713.	6.3	55
16	A driver role for GABA metabolism in controlling stem and proliferative cell state through GHB production in glioma. Acta Neuropathologica, 2017, 133, 645-660.	7.7	53
17	A European position on genome editing. Nature, 2017, 541, 30-30.	27.8	15
18	Fostering responsible research with genome editing technologies: a European perspective. Transgenic Research, 2017, 26, 709-713.	2.4	36

#	Article	IF	CITATIONS
19	Glut3 Addiction Is a Druggable Vulnerability for a Molecularly Defined Subpopulation of Glioblastoma. Cancer Cell, 2017, 32, 856-868.e5.	16.8	121
20	Commentary: Just Say "No― Cambridge Quarterly of Healthcare Ethics, 2017, 26, 701-704.	0.8	0
21	Glut3 addiction is a druggable vulnerability for a molecularly defined subpopulation of glioblastoma. Annals of Oncology, 2017, 28, vii24.	1.2	1
22	Development of a DIPG Orthotopic Model in Mice Using an Implantable Guide-Screw System. PLoS ONE, 2017, 12, e0170501.	2.5	11
23	Opposite effects of GCN5 and PCAF knockdowns on the alternative mechanism of telomere maintenance. Oncotarget, 2017, 8, 26269-26280.	1.8	11
24	HG-51DELTA-24-RDG IN COMBINATION WITH RADIOTHERAPY FOR DIPG: OPENING NEW THERAPEUTIC AVENUES. Neuro-Oncology, 2016, 18, iii58.4-iii59.	1.2	1
25	EXTH-09. LOOKING FOR AÂCURE: DELTA-24-RDG AND RADIOTHERAPY FOR DIPG TREATMENT. Neuro-Oncology, 2016, 18, vi61-vi61.	1.2	1
26	The antiâ€hypertensive drug prazosin inhibits glioblastoma growth via the <scp>PKC</scp> δâ€dependent inhibition of the <scp>AKT</scp> pathway. EMBO Molecular Medicine, 2016, 8, 511-526.	6.9	40
27	CHD7 promotes proliferation of neural stem cells mediated by MIF. Molecular Brain, 2016, 9, 96.	2.6	28
28	A Positive Feed-forward Loop Associating EGR1 and PDGFA Promotes Proliferation and Self-renewal in Glioblastoma Stem Cells. Journal of Biological Chemistry, 2016, 291, 10684-10699.	3.4	36
29	Calcium signaling orchestrates glioblastoma development: Facts and conjunctures. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1447-1459.	4.1	60
30	A preclinical mouse model of glioma with an alternative mechanism of telomere maintenance (ALT). International Journal of Cancer, 2015, 136, 1546-1558.	5.1	23
31	Connective-Tissue Growth Factor (CTGF/CCN2) Induces Astrogenesis and Fibronectin Expression of Embryonic Neural Cells In Vitro. PLoS ONE, 2015, 10, e0133689.	2.5	30
32	IM-04 * DELTA-24-RDG AS AN ALTERNATIVE THERAPEUTIC TOOL FOR pHGG/DIPG. Neuro-Oncology, 2015, 17, iii15-iii15.	1.2	0
33	Data in support of metabolic reprogramming in transformed mouse cortical astrocytes: A proteomic study. Data in Brief, 2015, 2, 1-5.	1.0	0
34	Flavonoids suppress human glioblastoma cell growth by inhibiting cell metabolism, migration, and by regulating extracellular matrix proteins and metalloproteinases expression. Chemico-Biological Interactions, 2015, 242, 123-138.	4.0	68
35	Metabolic reprogramming in transformed mouse cortical astrocytes: A proteomic study. Journal of Proteomics, 2015, 113, 292-314.	2.4	11
36	Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells. PLoS ONE, 2015, 10, e0134793.	2.5	19

#	Article	IF	CITATIONS
37	Absence of the Adaptor Protein PEA-15 Is Associated with Altered Pattern of Th Cytokines Production by Activated CD4+ T Lymphocytes In Vitro, and Defective Red Blood Cell Alloimmune Response In Vivo. PLoS ONE, 2015, 10, e0136885.	2.5	7
38	Comparative Expression Study of the Endo–G Protein Coupled Receptor (GPCR) Repertoire in Human Glioblastoma Cancer Stem-like Cells, U87-MG Cells and Non Malignant Cells of Neural Origin Unveils New Potential Therapeutic Targets. PLoS ONE, 2014, 9, e91519.	2.5	28
39	Endothelial Secreted Factors Suppress Mitogen Deprivation-Induced Autophagy and Apoptosis in Glioblastoma Stem-Like Cells. PLoS ONE, 2014, 9, e93505.	2.5	15
40	Sirtuin-2 Activity is Required for Glioma Stem Cell Proliferation Arrest but not Necrosis Induced by Resveratrol. Stem Cell Reviews and Reports, 2014, 10, 103-113.	5.6	47
41	A cell-penetrating peptide based on the interaction between c-Src and connexin43 reverses glioma stem cell phenotype. Cell Death and Disease, 2014, 5, e1023-e1023.	6.3	55
42	The relationship between brain tumor cell invasion of engineered neural tissues and inÂvivo features of glioblastoma. Biomaterials, 2013, 34, 8279-8290.	11.4	20
43	Tumorigenic Potential of miR-18A* in Glioma Initiating Cells Requires NOTCH-1 Signaling. Stem Cells, 2013, 31, 1252-1265.	3.2	40
44	Critical multiple angiogenic factors secreted by glioblastoma stemâ€like cells underline the need for combinatorial antiâ€angiogenic therapeutic strategies. Proteomics - Clinical Applications, 2013, 7, 79-90.	1.6	7
45	Retinoblastoma protein regulates the crosstalk between autophagy and apoptosis, and favors glioblastoma resistance to etoposide. Cell Death and Disease, 2013, 4, e767-e767.	6.3	52
46	The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death and Differentiation, 2012, 19, 232-244.	11.2	165
47	Antiproliferative Activity of <i>trans-</i> Avicennol from <i>Zanthoxylum chiloperone</i> var. <i>angustifolium</i> against Human Cancer Stem Cells. Journal of Natural Products, 2012, 75, 257-261.	3.0	11
48	Differential Proteomic Analysis of Human Glioblastoma and Neural Stem Cells Reveals HDGF as a Novel Angiogenic Secreted Factor. Stem Cells, 2012, 30, 845-853.	3.2	71
49	Alkaloids from Rutaceae: activities of canthin-6-one alkaloids and synthetic analogues on glioblastoma stems cells. MedChemComm, 2012, 3, 771.	3.4	15
50	Semaphorin 3A elevates endothelial cell permeability through PP2A inactivation. Journal of Cell Science, 2012, 125, 4137-46.	2.0	66
51	Functional analysis of HOXD9 in human gliomas and glioma cancer stem cells. Molecular Cancer, 2011, 10, 60.	19.2	69
52	Cerveau préservé, réparé, amélioré. Medecine Et Droit, 2011, 2011, 48-50.	0.1	0
53	Secreted factors from brain endothelial cells maintain glioblastoma stemâ€like cell expansion through the mTOR pathway. EMBO Reports, 2011, 12, 470-476.	4.5	114
54	Proteomic analysis of oligodendrogliomas expressing a mutant isocitrate dehydrogenaseâ€1. Proteomics, 2011, 11, 4139-4154.	2.2	12

#	Article	IF	CITATIONS
55	Alternative Lengthening of Telomeres in Human Glioma Stem Cells. Stem Cells, 2011, 29, 440-451.	3.2	61
56	Clinical Relevance of Tumor Cells with Stem-Like Properties in Pediatric Brain Tumors. PLoS ONE, 2011, 6, e16375.	2.5	57
57	<i>médecine/sciences</i> 2011. Medecine/Sciences, 2011, 27, 3-4.	0.2	2
58	CD133, CD15/SSEA-1, CD34 or side populations do not resume tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal tumors. BMC Cancer, 2010, 10, 66.	2.6	87
59	NG2 ⁺ /Olig2 ⁺ Cells are the Major Cycleâ€Related Cell Population of the Adult Human Normal Brain. Brain Pathology, 2010, 20, 399-411.	4.1	127
60	An ANOCEF genomic and transcriptomic microarray study of the response to radiotherapy or to alkylating first-line chemotherapy in glioblastoma patients. Molecular Cancer, 2010, 9, 234.	19.2	37
61	DLG1/SAP97 modulates transforming growth factor α bioavailability. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 264-272.	4.1	15
62	Calcium fingerprints induced by Calmodulin interactors in eukaryotic cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1068-1077.	4.1	14
63	Astrocytes Reverted to a Neural Progenitor-like State with Transforming Growth Factor Alpha Are Sensitized to Cancerous Transformation. Stem Cells, 2009, 27, 2373-2382.	3.2	39
64	GFAPδ immunostaining improves visualization of normal and pathologic astrocytic heterogeneity. Neuropathology, 2009, 29, 31-39.	1.2	25
65	Development of Human Nervous Tissue upon Differentiation of Embryonic Stem Cells in Three-Dimensional Culture. Stem Cells, 2009, 27, 509-520.	3.2	34
66	The PEA-15/PED protein protects glioblastoma cells from glucose deprivation-induced apoptosis via the ERK/MAP kinase pathway. Oncogene, 2008, 27, 1155-1166.	5.9	51
67	Trop court traité de l'âme :Court Traité de l'âme(Philippe Lazar). Medecine/Sciences, 2008, 24, 1	100.2108.	0
68	<i>Dans la lumière et les ombres</i> . Medecine/Sciences, 2008, 24, 1109-1110.	0.2	0
69	Des vœux qui ne peuvent rester pieux. Medecine/Sciences, 2008, 24, 3-3.	0.2	0
70	Voyage autour du monde dans le regard de l'autre : <i>L'homme pluriel</i> . Medecine/Sciences, 2008, 24, 1111-1111.	0.2	0
71	PED/PEA-15 Regulates Glucose-Induced Insulin Secretion by Restraining Potassium Channel Expression in Pancreatic Â-Cells. Diabetes, 2007, 56, 622-633.	0.6	29
72	Transforming growth factor α promotes sequential conversion of mature astrocytes into neural progenitors and stem cells. Oncogene, 2007, 26, 2695-2706.	5.9	83

#	Article	IF	CITATIONS
73	Quand l'art rencontre la science. Medecine/Sciences, 2007, 23, 1169-1169.	0.2	Ο
74	Transforming growth factor alpha acts as a gliatrophin for mouse and human astrocytes. Oncogene, 2006, 25, 4076-4085.	5.9	29
75	Phosphoprotein Enriched in Astrocytes-15 kDa Expression Inhibits Astrocyte Migration by a Protein Kinase Cl´-dependent Mechanism. Molecular Biology of the Cell, 2006, 17, 5141-5152.	2.1	56
76	Akt Down-Regulates ERK1/2 Nuclear Localization and Angiotensin II-induced Cell Proliferation through PEA-15. Molecular Biology of the Cell, 2006, 17, 3940-3951.	2.1	37
77	Expanded polyglutamine peptides disrupt EGF receptor signaling and glutamate transporter expression in Drosophila. Human Molecular Genetics, 2005, 14, 713-724.	2.9	83
78	p38/SAPK2 controls gap junction closure in astrocytes. Glia, 2004, 46, 323-333.	4.9	45
79	The expression of PEA-15 (phosphoprotein enriched in astrocytes of 15 kDa) defines subpopulations of astrocytes and neurons throughout the adult mouse brain. Neuroscience, 2004, 126, 263-275.	2.3	47
80	New Variants of Malignant Glioneuronal Tumors: A Clinicopathological Study of 40 Cases. Neurosurgery, 2004, 55, 1377-1392.	1.1	87
81	PEA-15 Modulates TNFα Intracellular Signaling in Astrocytes. Annals of the New York Academy of Sciences, 2003, 1010, 43-50.	3.8	24
82	The multifunctional protein PEA-15 is involved in the control of apoptosis and cell cycle in astrocytes. Biochemical Pharmacology, 2003, 66, 1581-1588.	4.4	68
83	Dans les grandes plaines de la génomique. Medecine/Sciences, 2003, 19, 501-504.	0.2	3
84	Les astrocytes contrÃ1ent la neurogenèse dans le système nerveux central adulte. Medecine/Sciences, 2002, 18, 1065-1066.	0.2	2
85	PEA-15 Mediates Cytoplasmic Sequestration of ERK MAP Kinase. Developmental Cell, 2001, 1, 239-250.	7.0	302
86	Death Effector Domain Protein PEA-15 Potentiates Ras Activation of Extracellular Signal Receptor-activated Kinase by an Adhesion-independent Mechanism. Molecular Biology of the Cell, 2000, 11, 2863-2872.	2.1	66
87	Regulation of Expression of Phospholipase D1 and D2 by PEA-15, a Novel Protein That Interacts with Them. Journal of Biological Chemistry, 2000, 275, 35224-35232.	3.4	56
88	Polyneuropathy in autosomal dominant cerebellar ataxias: Phenotype-genotype correlation. , 1999, 22, 712-717.		41
89	Molecular and Clinical Correlations in Spinocerebellar Ataxia 2: A Study of 32 Families. Human Molecular Genetics, 1997, 6, 709-715.	2.9	270
90	Percevoir n'est pas voir Medecine/Sciences, 1997, 13, 243.	0.2	0

#	Article	IF	CITATIONS
91	Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies): Genetic analysis of three unrelated SCA2 families. Human Genetics, 1996, 97, 671-676.	3.8	11
92	Spinocerebellar ataxia 3 and machadoâ€joseph disease: Clinical, molecular, and neuropathological features. Annals of Neurology, 1996, 39, 490-499.	5.3	401
93	The Major Astrocytic Phosphoprotein PEA-15 Is Encoded by Two mRNAs Conserved on Their Full Length in Mouse and Human. Journal of Biological Chemistry, 1996, 271, 14800-14806.	3.4	63
94	Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Brain, 1995, 118, 1573-1581.	7.6	211
95	SCA2 is not a major locus for ADCA type I in French families. American Journal of Medical Genetics Part A, 1995, 60, 382-385.	2.4	9
96	Analysis of the SCAI CAG repeat in a large number of families with dominant ataxia: Clinical and molecular correlations. Annals of Neurology, 1995, 37, 176-180.	5.3	79
97	Gender equality in Machado–Joseph disease. Nature Genetics, 1995, 11, 118-118.	21.4	5
98	Is DRPLA also linked to 14q?. Nature Genetics, 1994, 6, 8-8.	21.4	10
99	Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23–24.1. Nature Genetics, 1993, 4, 295-299.	21.4	298
100	Phenotypic variability in autosomal dominant cerebellar ataxia type I is unrelated to genetic heterogeneity. Brain, 1993, 116, 1497-1508.	7.6	45
101	Expression of transfected stathmin cDNA reveals novel phosphorylated forms associated with developmental and functional cell regulation. Biochemical Journal, 1992, 287, 549-554.	3.7	21
102	Stathmin Phosphorylation Is Regulated in Striatal Neurons by Vasoactive Intestinal Peptide and Monoamines via Multiple Intracellular Pathways. Journal of Neurochemistry, 1992, 58, 282-289.	3.9	53
103	Stathmin phosphorylation patterns discriminate between distinct transduction pathways of human T lymphocyte activation through CD2 triggering. FEBS Letters, 1991, 287, 80-84.	2.8	19
104	Cyclic AMP Accumulation Induces a Rapid Desensitization of the Cyclic AMP-Dependent Protein Kinase in Mouse Striatal Neurons. Journal of Neurochemistry, 1991, 57, 1708-1715.	3.9	21
105	Dopamine-induced homologous and heterologous desensitizations of adenylate cyclase-coupled receptors on striatal neurons. European Journal of Pharmacology, 1990, 189, 287-292.	2.6	14
106	Stathmin Is a Major Phosphoprotein and Cyclic AMP-Dependent Protein Kinase Substrate in Mouse Brain Neurons but Not in Astrocytes in Culture: Regulation During Ontogenesis. Journal of Neurochemistry, 1989, 53, 856-863.	3.9	65
107	Cyclic-amp dependent protein kinase in mouse striatal neurones and astrocytes in primary culture: development, subcellular distribution and stimulation of endogenous phosphorylation. Neurochemistry International, 1989, 14, 25-34.	3.8	16
108	Cyclic AMP reduces adhesion of isolated neuronal growth cones from developing rat forebrain to an astrocytic cell line from embryonic mouse striatum. Neuroscience, 1989, 28, 443-454.	2.3	4

#	Article	IF	CITATIONS
109	Somatostatin receptors on cortical neurones and adenohypophysis: comparison between specific binding and adenylate cyclase inhibition. European Journal of Pharmacology, 1987, 138, 249-255.	3.5	25
110	Modulation by Monoamines of Somatostatin ensitive Adenylate Cyclase on Neuronal and Glial Cells from the Mouse Brain in Primary Cultures. Journal of Neurochemistry, 1985, 44, 1825-1831.	3.9	83
111	Vasoactive Intestinal Polypeptide Receptors Linked to an Adenylate Cyclase, and Their Relationship with Biogenic Amine- and Somatostatin-Sensitive Adenylate Cyclases on Central Neuronal and Clial Cells in Primary Cultures. Journal of Neurochemistry, 1985, 44, 779-786.	3.9	117
112	Biogenic amine-sensitive adenylate cyclases in primary culture of neuronal or glial cells from mesencephalon. Brain Research, 1984, 302, 363-370.	2.2	28