Radhika Puttagunta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1280650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reversible CD8 T cell–neuron cross-talk causes aging-dependent neuronal regenerative decline. Science, 2022, 376, eabd5926.	12.6	30
2	Combination of Defined CatWalk Gait Parameters for Predictive Locomotion Recovery in Experimental Spinal Cord Injury Rat Models. ENeuro, 2021, 8, ENEURO.0497-20.2021.	1.9	18
3	Cyclic Stretch of Either PNS or CNS Located Nerves Can Stimulate Neurite Outgrowth. Cells, 2021, 10, 32.	4.1	7
4	AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury. Nature Metabolism, 2020, 2, 918-933.	11.9	30
5	PP4â€dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure. EMBO Journal, 2019, 38, e101032.	7.8	32
6	Peptides and Astroglia Improve the Regenerative Capacity of Alginate Gels in the Injured Spinal Cord. Tissue Engineering - Part A, 2019, 25, 522-537.	3.1	19
7	Systemic epothilone D improves hindlimb function after spinal cord contusion injury in rats. Experimental Neurology, 2018, 306, 250-259.	4.1	41
8	Sensorimotor Activity Partially Ameliorates Pain and Reduces Nociceptive Fiber Density in the Chronically Injured Spinal Cord. Journal of Neurotrauma, 2018, 35, 2222-2238.	3.4	30
9	Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury. Acta Biomaterialia, 2017, 60, 167-180.	8.3	93
10	Biomaterial-Supported Cell Transplantation Treatments for Spinal Cord Injury: Challenges and Perspectives. Frontiers in Cellular Neuroscience, 2017, 11, 430.	3.7	83
11	Regulation of Adult CNS Axonal Regeneration by the Post-transcriptional Regulator Cpeb1. Frontiers in Molecular Neuroscience, 2017, 10, 445.	2.9	7
12	The MDM4/MDM2-p53-IGF1 axis controls axonal regeneration, sprouting and functional recovery after CNS injury. Brain, 2015, 138, 1843-1862.	7.6	49
13	PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nature Communications, 2014, 5, 3527.	12.8	140
14	DNA methylation temporal profiling following peripheral versus central nervous system axotomy. Scientific Data, 2014, 1, 140038.	5.3	16
15	Epigenetic Regulation of Axon Outgrowth and Regeneration in CNS Injury: The First Steps Forward. Neurotherapeutics, 2013, 10, 771-781.	4.4	35
16	RA–RAR-β counteracts myelin-dependent inhibition of neurite outgrowth via Lingo-1 repression. Journal of Cell Biology, 2011, 193, 1147-1156.	5.2	24
17	Retinoic acid signaling in axonal regeneration. Frontiers in Molecular Neuroscience, 2011, 4, 59.	2.9	24
18	HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death and Differentiation, 2010, 17, 1392-1408.	11.2	173

#	Article	IF	CITATIONS
19	A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death and Differentiation, 2009, 16, 543-554.	11.2	118
20	Mutations in a novel gene encoding a CRAL-TRIO domain cause human Cayman ataxia and ataxia/dystonia in the jittery mouse. Nature Genetics, 2003, 35, 264-269.	21.4	134
21	Comparative Maps of Human 19p13.3 and Mouse Chromosome 10 Allow Identification of Sequences at Evolutionary Breakpoints. Genome Research, 2000, 10, 1369-1380.	5.5	36