Radhika Puttagunta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1280650/publications.pdf

Version: 2024-02-01

471509 1,139 21 17 citations h-index papers

g-index 22 22 22 1619 docs citations times ranked citing authors all docs

713466

21

#	Article	IF	CITATIONS
1	HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death and Differentiation, 2010, 17, 1392-1408.	11.2	173
2	PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nature Communications, 2014, 5, 3527.	12.8	140
3	Mutations in a novel gene encoding a CRAL-TRIO domain cause human Cayman ataxia and ataxia/dystonia in the jittery mouse. Nature Genetics, 2003, 35, 264-269.	21.4	134
4	A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death and Differentiation, 2009, 16, 543-554.	11.2	118
5	Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury. Acta Biomaterialia, 2017, 60, 167-180.	8.3	93
6	Biomaterial-Supported Cell Transplantation Treatments for Spinal Cord Injury: Challenges and Perspectives. Frontiers in Cellular Neuroscience, 2017, 11, 430.	3.7	83
7	The MDM4/MDM2-p53-IGF1 axis controls axonal regeneration, sprouting and functional recovery after CNS injury. Brain, 2015, 138, 1843-1862.	7.6	49
8	Systemic epothilone D improves hindlimb function after spinal cord contusion injury in rats. Experimental Neurology, 2018, 306, 250-259.	4.1	41
9	Comparative Maps of Human 19p13.3 and Mouse Chromosome 10 Allow Identification of Sequences at Evolutionary Breakpoints. Genome Research, 2000, 10, 1369-1380.	5. 5	36
10	Epigenetic Regulation of Axon Outgrowth and Regeneration in CNS Injury: The First Steps Forward. Neurotherapeutics, 2013, 10, 771-781.	4.4	35
11	PP4â€dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure. EMBO Journal, 2019, 38, e101032.	7.8	32
12	Sensorimotor Activity Partially Ameliorates Pain and Reduces Nociceptive Fiber Density in the Chronically Injured Spinal Cord. Journal of Neurotrauma, 2018, 35, 2222-2238.	3.4	30
13	AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury. Nature Metabolism, 2020, 2, 918-933.	11.9	30
14	Reversible CD8 T cell–neuron cross-talk causes aging-dependent neuronal regenerative decline. Science, 2022, 376, eabd5926.	12.6	30
15	RA–RAR-β counteracts myelin-dependent inhibition of neurite outgrowth via Lingo-1 repression. Journal of Cell Biology, 2011, 193, 1147-1156.	5.2	24
16	Retinoic acid signaling in axonal regeneration. Frontiers in Molecular Neuroscience, 2011, 4, 59.	2.9	24
17	Peptides and Astroglia Improve the Regenerative Capacity of Alginate Gels in the Injured Spinal Cord. Tissue Engineering - Part A, 2019, 25, 522-537.	3.1	19
18	Combination of Defined CatWalk Gait Parameters for Predictive Locomotion Recovery in Experimental Spinal Cord Injury Rat Models. ENeuro, 2021, 8, ENEURO.0497-20.2021.	1.9	18

#	Article	IF	CITATION
19	DNA methylation temporal profiling following peripheral versus central nervous system axotomy. Scientific Data, 2014, 1, 140038.	5.3	16
20	Regulation of Adult CNS Axonal Regeneration by the Post-transcriptional Regulator Cpeb1. Frontiers in Molecular Neuroscience, 2017, 10, 445.	2.9	7
21	Cyclic Stretch of Either PNS or CNS Located Nerves Can Stimulate Neurite Outgrowth. Cells, 2021, 10, 32.	4.1	7