Thomas J Silhavy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1279560/publications.pdf

Version: 2024-02-01

249 papers 21,679 citations

77 h-index

7568

137 g-index

257 all docs

257 docs citations

times ranked

257

12931 citing authors

#	Article	IF	CITATIONS
1	The Bacterial Cell Envelope. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000414-a000414.	5.5	2,408
2	Identification of a Multicomponent Complex Required for Outer Membrane Biogenesis in Escherichia coli. Cell, 2005, 121, 235-245.	28.9	656
3	Suppressor mutations that restore export of a protein with a defective signal sequence. Cell, 1981, 23, 79-88.	28.9	435
4	An ABC transport system that maintains lipid asymmetry in the Gram-negative outer membrane. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8009-8014.	7.1	411
5	Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in <i>Escherichia coli</i> . Genes and Development, 2007, 21, 2473-2484.	5.9	409
6	Advances in understanding bacterial outer-membrane biogenesis. Nature Reviews Microbiology, 2006, 4, 57-66.	28.6	405
7	Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2287-2292.	7.1	368
8	The ompB locus and the regulation of the major outer membrane porin proteins of Escherichia coli K12. Journal of Molecular Biology, 1981, 146, 23-43.	4.2	358
9	Periplasmic Stress and ECF Sigma Factors. Annual Review of Microbiology, 2001, 55, 591-624.	7.3	342
10	Genetic analysis of the ompB locus in Escherichia coli K-12. Journal of Molecular Biology, 1981, 151, 1-15.	4.2	341
11	Structure and Function of an Essential Component of the Outer Membrane Protein Assembly Machine. Science, 2007, 317, 961-964.	12.6	327
12	Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11754-11759.	7.1	322
13	Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nature Reviews Microbiology, 2016, 14, 337-345.	28.6	299
14	From acids to <i>osmZ</i> : multiple factors influence synthesis of the OmpF and OmpC porins in <i>Escherichia coli</i> . Molecular Microbiology, 1996, 20, 911-917.	2.5	298
15	\hat{l}^2 -Barrel Membrane Protein Assembly by the Bam Complex. Annual Review of Biochemistry, 2011, 80, 189-210.	11.1	290
16	Chemical Conditionality. Cell, 2005, 121, 307-317.	28.9	287
17	The E. coli ffh gene is necessary for viability and efficient protein export. Nature, 1992, 359, 744-746.	27.8	285
18	Sensing external stress: watchdogs of the Escherichia coli cell envelope. Current Opinion in Microbiology, 2005, 8, 122-126.	5.1	281

#	Article	IF	CITATIONS
19	YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly inEscherichia coli. Molecular Microbiology, 2006, 61, 151-164.	2.5	278
20	Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6400-6405.	7.1	267
21	CpxP, a Stress-Combative Member of the Cpx Regulon. Journal of Bacteriology, 1998, 180, 831-839.	2.2	265
22	Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Molecular Microbiology, 2002, 45, 1289-1302.	2.5	232
23	Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nature Reviews Microbiology, 2009, 7, 677-683.	28.6	232
24	Outer Membrane Biogenesis. Annual Review of Microbiology, 2017, 71, 539-556.	7.3	229
25	Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of <i>Escherichia coli</i> Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5537-5542.	7.1	225
26	Sequence analysis of mutations that prevent export of \hat{l} » receptor, an Escherichia coli outer membrane protein. Nature, 1980, 285, 82-85.	27.8	224
27	Genetic Evidence for Parallel Pathways of Chaperone Activity in the Periplasm of Escherichia coli. Journal of Bacteriology, 2001, 183, 6794-6800.	2.2	219
28	Functional Analysis of the Protein Machinery Required for Transport of Lipopolysaccharide to the Outer Membrane of <i>Escherichia coli</i> . Journal of Bacteriology, 2008, 190, 4460-4469.	2.2	218
29	The Cpx Envelope Stress Response Is Controlled by Amplification and Feedback Inhibition. Journal of Bacteriology, 1999, 181, 5263-5272.	2.2	209
30	TARGETING AND ASSEMBLY OF PERIPLASMIC AND OUTER-MEMBRANE PROTEINS INESCHERICHIA COLI. Annual Review of Genetics, 1998, 32, 59-94.	7.6	206
31	Signal Detection and Target Gene Induction by the CpxRA Two-Component System. Journal of Bacteriology, 2003, 185, 2432-2440.	2.2	198
32	Heat-shock proteins DnaK and GroEL facilitate export of LacZ hybrid proteins in E. coli. Nature, 1990, 344, 882-884.	27.8	195
33	EnvZ controls the concentration of phosphorylated OmpR to mediate osmoregulation of the porin genes. Journal of Molecular Biology, 1991, 222, 567-580.	4.2	194
34	Thesec andprl genes of Escherichia coli. Journal of Bioenergetics and Biomembranes, 1990, 22, 291-310.	2.3	190
35	Characterization of the two-protein complex in <i>Escherichia coli</i> responsible for lipopolysaccharide assembly at the outer membrane. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5363-5368.	7.1	184
36	Contactâ€dependent growth inhibition requires the essential outer membrane protein BamA (YaeT) as the receptor and the inner membrane transport protein AcrB. Molecular Microbiology, 2008, 70, 323-340.	2.5	173

#	Article	IF	CITATIONS
37	The $intering$ and Cpx regulatory pathways: Overlapping but distinct envelope stress responses. Current Opinion in Microbiology, 1999, 2, 159-165.	5.1	167
38	Mutations affecting localization of an Escherichia coli outer membrane protein, the bacteriophage \hat{l} » receptor. Journal of Molecular Biology, 1980, 141, 63-90.	4.2	166
39	A signal sequence is not sufficient to lead \hat{I}^2 -galactosidase out of the cytoplasm. Nature, 1980, 286, 356-359.	27.8	165
40	Two-Component Signal Transduction Systems: Structure-Function Relationships and Mechanisms of Catalysis., 0,, 25-51.		164
41	Structure of the malB region in Escherichia coli K12. Molecular Genetics and Genomics, 1979, 174, 249-259.	2.4	157
42	Envelope stress responses: balancing damage repair and toxicity. Nature Reviews Microbiology, 2019, 17, 417-428.	28.6	153
43	The Bam machine: A molecular cooper. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1067-1084.	2.6	145
44	PrlA (SecY) and PrlG (SecE) interact directly and function sequentially during protein translocation in E. coli. Cell, 1990, 61, 833-842.	28.9	143
45	Quality control in the bacterial periplasm. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1694, 121-134.	4.1	143
46	A previously unidentified gene in the spc operon of Escherichia coli K12 specifies a component of the protein export machinery. Cell, 1982, 31, 227-235.	28.9	142
47	The extracytoplasmic adaptor protein CpxP is degraded with substrate by DegP. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17775-17779.	7.1	142
48	Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1565-74.	7.1	142
49	Mutations That Alter the Kinase and Phosphatase Activities of the Two-Component Sensor EnvZ. Journal of Bacteriology, 1998, 180, 4538-4546.	2.2	141
50	A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21748-21757.	7.1	136
51	Characterization of the role of the <i>Escherichia coli</i> periplasmic chaperone SurA using differential proteomics. Proteomics, 2009, 9, 2432-2443.	2.2	128
52	Genetic Basis for Activity Differences Between Vancomycin and Glycolipid Derivatives of Vancomycin. Science, 2001, 294, 361-364.	12.6	127
53	Periplasmic Peptidyl Prolyl cis-trans Isomerases Are Not Essential for Viability, but SurA Is Required for Pilus Biogenesis in Escherichia coli. Journal of Bacteriology, 2005, 187, 7680-7686.	2.2	126
54	Genetic analysis of the switch that controls porin gene expression in Escherichia coli K-12. Journal of Molecular Biology, 1989, 210, 281-292.	4.2	123

#	Article	IF	Citations
55	Sirtuins Are Evolutionarily Conserved Viral Restriction Factors. MBio, 2014, 5, .	4.1	122
56	Lipoprotein LptE is required for the assembly of LptD by the \hat{I}^2 -barrel assembly machine in the outer membrane of <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2492-2497.	7.1	116
57	Outer membrane lipoprotein biogenesis: Lol is not the end. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150030.	4.0	116
58	Crl stimulates RpoS activity during stationary phase. Molecular Microbiology, 1998, 29, 1225-1236.	2.5	114
59	Envelope Stress Responses: An Interconnected Safety Net. Trends in Biochemical Sciences, 2017, 42, 232-242.	7. 5	112
60	The essential tension: opposed reactions in bacterial two-component regulatory systems. Trends in Microbiology, 1993, 1, 306-310.	7.7	111
61	Physical properties of the bacterial outer membrane. Nature Reviews Microbiology, 2022, 20, 236-248.	28.6	111
62	The free and bound forms of Lpp occupy distinct subcellular locations in <i>Escherichia coli</i> Molecular Microbiology, 2011, 79, 1168-1181.	2.5	109
63	Transmembrane domain of surface-exposed outer membrane lipoprotein RcsF is threaded through the lumen of \hat{l}^2 -barrel proteins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4350-8.	7.1	109
64	Escherichia coli Starvation Diets: Essential Nutrients Weigh in Distinctly. Journal of Bacteriology, 2005, 187, 7549-7553.	2,2	107
65	Effects of Antibiotics and a Proto-Oncogene Homolog on Destruction of Protein Translocator SecY. Science, 2009, 325, 753-756.	12.6	105
66	The Cpx Stress Response Confers Resistance to Some, but Not All, Bactericidal Antibiotics. Journal of Bacteriology, 2013, 195, 1869-1874.	2.2	103
67	Redefining the essential trafficking pathway for outer membrane lipoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4769-4774.	7.1	101
68	Mutational activation of the Cpx signal transduction pathway of Escherichia coli suppresses the toxicity conferred by certain envelope-associated stresses. Molecular Microbiology, 1995, 18, 491-505.	2.5	98
69	Nonconsecutive disulfide bond formation in an essential integral outer membrane protein. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12245-12250.	7.1	96
70	Mapping an Interface of SecY (PrlA) and SecE (PrlG) by Using Synthetic Phenotypes and In Vivo Cross-Linking. Journal of Bacteriology, 1999, 181, 3438-3444.	2.2	96
71	Sequence information within the lamB gene is required for proper routing of the bacteriophage l̂» receptor protein to the outer membrane of Escherichia coli K-12. Journal of Molecular Biology, 1982, 156, 93-112.	4.2	94
72	Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for \hat{l}^2 -barrel assembly in <i>Escherichia coli</i> Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5151-5156.	7.1	94

#	Article	IF	CITATIONS
73	Tethering of CpxP to the inner membrane prevents spheroplast induction of the Cpx envelope stress response. Molecular Microbiology, 2000, 37, 1186-1197.	2.5	91
74	Accumulation of the Enterobacterial Common Antigen Lipid II Biosynthetic Intermediate Stimulates <i>degP</i> Transcription in <i>Escherichia coli</i> Journal of Bacteriology, 1998, 180, 5875-5884.	2.2	90
75	A lipoprotein/ \hat{l}^2 -barrel complex monitors lipopolysaccharide integrity transducing information across the outer membrane. ELife, 2016, 5, .	6.0	88
76	prlF and yhaV Encode a New Toxin–Antitoxin System in Escherichia coli. Journal of Molecular Biology, 2007, 372, 894-905.	4.2	87
77	Starvation for Different Nutrients in Escherichia coli Results in Differential Modulation of RpoS Levels and Stability. Journal of Bacteriology, 2005, 187, 434-442.	2.2	85
78	The art and design of genetic screens: Escherichia coli. Nature Reviews Genetics, 2003, 4, 419-431.	16.3	84
79	Kinetic Analysis of the Assembly of the Outer Membrane Protein LamB in Escherichia coli Mutants Each Lacking a Secretion or Targeting Factor in a Different Cellular Compartment. Journal of Bacteriology, 2007, 189, 446-454.	2.2	83
80	Complex spatial distribution and dynamics of an abundant Escherichia coli outer membrane protein, LamB. Molecular Microbiology, 2004, 53, 1771-1783.	2.5	82
81	Information within the mature LamB protein necessary for localization to the outer membrane of E coli K12. Cell, 1983, 32, 1325-1335.	28.9	80
82	Mutations that Affect Separate Functions of OmpR the Phosphorylated Regulator of Porin Transcription in Escherichia coli. Journal of Molecular Biology, 1993, 231, 261-273.	4.2	80
83	Characterization of a stalled complex on the \hat{I}^2 -barrel assembly machine. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8717-8722.	7.1	77
84	Activation of the <i>Escherichia coli</i> \hat{l}^2 -barrel assembly machine (Bam) is required for essential components to interact properly with substrate. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3487-3491.	7.1	76
85	LptE binds to and alters the physical state of LPS to catalyze its assembly at the cell surface. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9467-9472.	7.1	74
86	Probing the Barrier Function of the Outer Membrane with Chemical Conditionality. ACS Chemical Biology, 2006, 1, 385-395.	3.4	72
87	BamE Modulates the Escherichia coli Beta-Barrel Assembly Machine Component BamA. Journal of Bacteriology, 2012, 194, 1002-1008.	2.2	72
88	Porin Regulon of Escherichia coli., 0,, 105-127.		70
89	Isolation and characterization of mutations altering expression of the major outer membrane porin proteins using the local anaesthetic procaine. Journal of Molecular Biology, 1983, 166, 273-282.	4.2	69
90	A Suppressor of Cell Death Caused by the Loss of if E Downregulates Extracytoplasmic Stress Responses and Outer Membrane Vesicle Production in Escherichia coli. Journal of Bacteriology, 2007, 189, 1523-1530.	2.2	68

#	Article	IF	CITATIONS
91	Making a beta-barrel: assembly of outer membrane proteins in Gram-negative bacteria. Current Opinion in Microbiology, 2012, 15, 189-193.	5.1	67
92	OmpR mutants specifically defective for transcriptional activation. Journal of Molecular Biology, 1994, 243, 579-594.	4.2	65
93	The <i>Escherichia coli</i> Phospholipase PldA Regulates Outer Membrane Homeostasis via Lipid Signaling. MBio, 2018, 9, .	4.1	65
94	The LysR Homolog LrhA Promotes RpoS Degradation by Modulating Activity of the Response Regulator SprE. Journal of Bacteriology, 1999, 181, 563-571.	2.2	65
95	[9] Genetic fusions as experimental tools. Methods in Enzymology, 1991, 204, 213-248.	1.0	64
96	Secretion of LamB-LacZ by the Signal Recognition Particle Pathway of Escherichia coli. Journal of Bacteriology, 2003, 185, 5697-5705.	2.2	64
97	[15] Engineering Escherchia coli to secrete heterologous gene products. Methods in Enzymology, 1990, 185, 166-187.	1.0	63
98	Constitutive Activation of the Escherichia coli Pho Regulon Upregulates rpoS Translation in an Hfq-Dependent Fashion. Journal of Bacteriology, 2003, 185, 5984-5992.	2.2	60
99	Dissecting the <i>Escherichia coli</i> periplasmic chaperone network using differential proteomics. Proteomics, 2012, 12, 1391-1401.	2.2	58
100	Identification of base pairs important for OmpR-DNA interaction. Molecular Microbiology, 1995, 17, 565-573.	2.5	57
101	RpoS Proteolysis Is Regulated by a Mechanism That Does Not Require the SprE (RssB) Response Regulator Phosphorylation Site. Journal of Bacteriology, 2004, 186, 7403-7410.	2.2	56
102	Making a membrane on the other side of the wall. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1386-1393.	2.4	55
103	Cyclic Enterobacterial Common Antigen Maintains the Outer Membrane Permeability Barrier of Escherichia coli in a Manner Controlled by YhdP. MBio, 2018, 9, .	4.1	54
104	Phase separation in the outer membrane of <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	53
105	LrhA Regulates rpoS Translation in Response to the Rcs Phosphorelay System in Escherichia coli. Journal of Bacteriology, 2006, 188, 3175-3181.	2.2	52
106	Decline in ribosomal fidelity contributes to the accumulation and stabilization of the master stress response regulator ÂS upon carbon starvation. Genes and Development, 2007, 21, 862-874.	5.9	52
107	RpoS proteolysis is controlled directly by ATP levels in <i>Escherichia coli</i> Development, 2012, 26, 548-553.	5.9	52
108	The CpxQ sRNA Negatively Regulates Skp To Prevent Mistargeting of \hat{l}^2 -Barrel Outer Membrane Proteins into the Cytoplasmic Membrane. MBio, 2016, 7, e00312-16.	4.1	52

#	Article	IF	Citations
109	Inhibitor of intramembrane protease RseP blocks the $\ddot{l}f$ (sup>E response causing lethal accumulation of unfolded outer membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6614-E6621.	7.1	51
110	Characterization and <i>in Vivo</i> Cloning of <i>prlC</i> , a Suppressor of Signal Sequence Mutations in <i>Escherichia coli</i> K12. Genetics, 1987, 116, 513-521.	2.9	50
111	Regulation of Capsule Synthesis: Modification of the Two-Component Paradigm by an Accessory Unstable Regulator., 0,, 253-262.		49
112	YejM Modulates Activity of the YciM/FtsH Protease Complex To Prevent Lethal Accumulation of Lipopolysaccharide. MBio, 2020, 11 , .	4.1	48
113	Substrate binding to BamD triggers a conformational change in BamA to control membrane insertion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2359-2364.	7.1	47
114	The Response Regulator SprE (RssB) Is Required for Maintaining Poly(A) Polymerase I-Degradosome Association during Stationary Phase. Journal of Bacteriology, 2010, 192, 3713-3721.	2.2	46
115	Crl Facilitates RNA Polymerase Holoenzyme Formation. Journal of Bacteriology, 2006, 188, 7966-7970.	2.2	45
116	Control of Cellular Development in Sporulating Bacteria by the Phosphorelay Two-Component Signal Transduction System., 0,, 129-144.		45
117	Predicting Functionally Informative Mutations in <i>Escherichia coli</i> BamA Using Evolutionary Covariance Analysis. Genetics, 2013, 195, 443-455.	2.9	42
118	Transcriptional occlusion caused by overlapping promoters. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1557-1561.	7.1	41
119	RpoS-Dependent Transcriptional Control of sprE : Regulatory Feedback Loop. Journal of Bacteriology, 2001, 183, 5974-5981.	2.2	40
120	Role for Skp in LptD Assembly in Escherichia coli. Journal of Bacteriology, 2013, 195, 3734-3742.	2.2	40
121	Novel RpoS-Dependent Mechanisms Strengthen the Envelope Permeability Barrier during Stationary Phase. Journal of Bacteriology, 2017, 199, .	2.2	40
122	Border Control: Regulating LPS Biogenesis. Trends in Microbiology, 2021, 29, 334-345.	7.7	40
123	Dual Sensors and Dual Response Regulators Interact to Control Nitrate- and Nitrite-Responsive Gene Expression in Escherichia coli., 0,, 233-252.		40
124	Continuous Control in Bacterial Regulatory Circuits. Journal of Bacteriology, 2004, 186, 7618-7625.	2.2	39
125	Classifying \hat{l}^2 -Barrel Assembly Substrates by Manipulating Essential Bam Complex Members. Journal of Bacteriology, 2016, 198, 1984-1992.	2.2	38
126	Distinctive Roles for Periplasmic Proteases in the Maintenance of Essential Outer Membrane Protein Assembly. Journal of Bacteriology, 2017, 199, .	2.2	37

#	Article	IF	CITATIONS
127	Accumulation of Phosphatidic Acid Increases Vancomycin Resistance in Escherichia coli. Journal of Bacteriology, 2014, 196, 3214-3220.	2.2	36
128	The inner membrane protein YhdP modulates the rate of anterograde phospholipid flow in <i>Escherichia coli (i). Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26907-26914.</i>	7.1	36
129	Dominant Negative lptE Mutation That Supports a Role for LptE as a Plug in the LptD Barrel. Journal of Bacteriology, 2013, 195, 1327-1334.	2.2	35
130	The Synthetic Phenotype of $\hat{l}'' < i > bamB < /i > \hat{l}'' < i > bamE < /i > Double Mutants Results from a Lethal Jamming of the Bam Complex by the Lipoprotein RcsF. MBio, 2019, 10, .$	4.1	35
131	The Activity and Specificity of the Outer Membrane Protein Chaperone SurA Are Modulated by a Proline Isomerase Domain. MBio, 2013, 4, .	4.1	34
132	The genetics of protein secretion in E. coli. Trends in Genetics, 1990, 6, 329-334.	6.7	33
133	P Pilus Assembly Motif Necessary for Activation of the CpxRA Pathway by PapE in Escherichia coli. Journal of Bacteriology, 2004, 186, 4326-4337.	2.2	33
134	Involvement of a tryptophan residue in the binding site of Escherichia coli galactose-binding protein. Biochemistry, 1974 , 13 , 993 - 999 .	2.5	32
135	Ti Plasmid and Chromosomally Encoded Two-Component Systems Important in Plant Cell Transformation by <i>Agrobacterium </i> Species., 0,, 367-385.		32
136	The Activity of Escherichia coli Chaperone SurA Is Regulated by Conformational Changes Involving a Parvulin Domain. Journal of Bacteriology, 2016, 198, 921-929.	2.2	29
137	Outer Membrane Protein Insertion by the \hat{l}^2 -barrel Assembly Machine. EcoSal Plus, 2019, 8, .	5.4	29
138	Sirtuin Lipoamidase Activity Is Conserved in Bacteria as a Regulator of Metabolic Enzyme Complexes. MBio, $2017, 8, .$	4.1	28
139	PrIC, a suppressor of signal sequence mutations in Escherichia coli, can direct the insertion of the signal sequence into the membrane. Journal of Molecular Biology, 1989, 205, 665-676.	4.2	27
140	A Signal Transduction Network in Bacillus subtilis Includes the DegS/DegU and ComP/ComA Two-Component Systems., 0,, 447-471.		27
141	Assembly of Outer Membrane Î ² -Barrel Proteins: the Bam Complex. EcoSal Plus, 2011, 4, .	5.4	26
142	Regulation of Salmonella Virulence by Two-Component Regulatory Systems., 0,, 319-332.		26
143	[1] Genetic analysis of protein export in Escherichia coli. Methods in Enzymology, 1983, 97, 3-11.	1.0	25
144	Transposition of λplacMu is mediated by the A protein altered at its carboxy-terminal end. Gene, 1988, 71, 177-186.	2.2	25

#	Article	IF	CITATIONS
145	Genetic Approaches for Signaling Pathways and Proteins. , 2014, , 7-23.		25
146	Two-Component Signal Transduction and Its Role in the Expression of Bacterial Virulence Factors. , 0, , 303-317.		25
147	Structural and Functional Conservation in Response Regulators. , 0, , 53-64.		25
148	Control of Nitrogen Assimilation by the NRI-NRII Two-Component System of Enteric Bacteria., 0,, 65-88.		25
149	Signal Transduction and Cross Regulation in the Escherichia coli Phosphate Regulon by PhoR, CreC, and Acetyl Phosphate., 0,, 201-221.		24
150	Conferral of transposable properties to a chromosomal gene in Escherichia coli. Journal of Molecular Biology, 1980, 141, 235-248.	4.2	23
151	Metabolite turns master regulator. Nature, 2013, 500, 283-284.	27.8	23
152	The gain-of-function allele <i>bamA</i> _{<i>E470K</i>} bypasses the essential requirement for BamD in β-barrel outer membrane protein assembly. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18737-18743.	7.1	23
153	Flagellar Switch., 0,, 181-199.		23
154	A mutant Escherichia coli that attaches peptidoglycan to lipopolysaccharide and displays cell wall on its surface. ELife, 2014, 3, e05334.	6.0	23
155	His–Asp Phosphorelay: Two Components or More?. Cell, 1996, 85, 13-14.	28.9	21
156	[2] A practical guide to the construction and use of lac fusions in Escherichia coli. Methods in Enzymology, 2000, 326, 11-35.	1.0	21
157	Bordetella pertussis BvgAS Virulence Control System. , 2014, , 333-349.		21
158	Folding LacZ in the Periplasm of Escherichia coli. Journal of Bacteriology, 2014, 196, 3343-3350.	2.2	21
159	Mechanism of Transcriptional Activation by NtrC. , 0, , 145-158.		21
160	Gene Fusions. Journal of Bacteriology, 2000, 182, 5935-5938.	2.2	20
161	Absence of the Outer Membrane Phospholipase A Suppresses the Temperature-Sensitive Phenotype of Escherichia coli degP Mutants and Induces the Cpx and Ï, E Extracytoplasmic Stress Responses. Journal of Bacteriology, 2001, 183, 5230-5238.	2.2	20
162	Conformational Changes That Coordinate the Activity of BamA and BamD Allowing \hat{l}^2 -Barrel Assembly. Journal of Bacteriology, 2017, 199, .	2.2	20

#	Article	IF	CITATIONS
163	The Response Regulator SprE (RssB) Modulates Polyadenylation and mRNA Stability in <i>Escherichia coli </i> i>. Journal of Bacteriology, 2009, 191, 6812-6821.	2.2	19
164	Functions of the BamBCDE Lipoproteins Revealed by Bypass Mutations in BamA. Journal of Bacteriology, 2020, 202, .	2.2	19
165	Transcription Regulation by the <i>Bacillus subtilis </i> Response Regulator SpoOA., 0,, 159-179.		19
166	[2] Isolation and characterization of mutants of Escherichia coli K12 affected in protein localization. Methods in Enzymology, 1983, 97, 11-40.	1.0	18
167	Gene fusions to the ptsM/pel locus of Escherichia coli. Molecular Genetics and Genomics, 1985, 199, 427-433.	2.4	18
168	Signal Transduction in the Arc System for Control of Operons Encoding Aerobic Respiratory Enzymes. , 0, , 223-231.		17
169	lacZ fusions to genes that specify exported proteins: A general technique. Molecular Genetics and Genomics, 1984, 194, 388-394.	2.4	16
170	ASM Journals Eliminate Impact Factor Information from Journal Websites. MBio, 2016, 7, .	4.1	16
171	The Porin Regulon: A Paradigm for the Two-Component Regulatory Systems. , 1996, , 383-417.		16
172	Expression of the Uhp Sugar-Phosphate Transport System of Escherichia coli., 0,, 263-274.		16
173	A Suppressor Mutation That Creates a Faster and More Robust If E Envelope Stress Response. Journal of Bacteriology, 2016, 198, 2345-2351.	2.2	14
174	Complex Phosphate Regulation by Sequential Switches in Bacillus subtilis., 0,, 289-302.		14
175	The frz Signal Transduction System Controls Multicellular Behavior in Myxococcus xanthus. , 0, , 419-430.		14
176	Chemotactic Signal Transduction in Escherichia coli and Salmonella typhimurium., 0,, 89-103.		14
177	Genetic studies on mechanisms of protein localization in escherichia coli K-12. Journal of Supramolecular Structure, 1980, 13, 147-163.	2.3	13
178	Tetracycline Regulation of Conjugal Transfer Genes., 0,, 393-400.		13
179	The "Hidden Ligand" of the Galactose-Binding Protein. FEBS Journal, 1975, 54, 163-167.	0.2	11
180	Chapter 3 The Genetics of Protein Secretion in Escherichia coli. Methods in Cell Biology, 1981, 23, 27-38.	1.1	11

#	Article	IF	CITATIONS
181	The genetics of protein targeting in Escherichia coli K12. Journal of Cell Science, 1989, 1989, 13-28.	2.0	10
182	Classic Spotlight: Gram-Negative Bacteria Have Two Membranes. Journal of Bacteriology, 2016, 198, 201-201.	2.2	10
183	Three-Component Regulatory System Controlling Virulence in Vibrio cholerae. , 0, , 351-365.		10
184	Intercellular Communication in Marine Vibrio Species: Density-Dependent Regulation of the Expression of Bioluminescence. , 0 , , $431-445$.		10
185	ASM Journals Eliminate Impact Factor Information from Journal Websites. Infection and Immunity, 2016, 84, 2407-2408.	2.2	9
186	Genetic Analysis of Protein Translocation. Protein Journal, 2019, 38, 217-228.	1.6	9
187	SprE Levels Are Growth Phase Regulated in a Ï,S-Dependent Manner at the Level of Translation. Journal of Bacteriology, 2000, 182, 4117-4120.	2.2	8
188	Signal Sequence Mutations as Tools for the Characterization of LamB Folding Intermediates. Journal of Bacteriology, 2002, 184, 6918-6928.	2.2	8
189	Selection Procedure for Mutants Defective in the β-Methylgalactoside Transport System of «i>Escherichia coli Utilizing the Compound 2R-Glyceryl-β- <scp>d</scp> -Galactopyranoside. Journal of Bacteriology, 1974, 120, 424-432.	2.2	8
190	Null Mutations in a Nudix Gene, ygdP, Implicate an Alarmone Response in a Novel Suppression of Hybrid Jamming. Journal of Bacteriology, 2003, 185, 6530-6539.	2.2	7
191	ASM Journals Eliminate Impact Factor Information from Journal Websites. Journal of Clinical Microbiology, 2016, 54, 2216-2217.	3.9	7
192	Folding-Based Suppression of Extracytoplasmic Toxicity Conferred by Processing-Defective LamB. Journal of Bacteriology, 1998, 180, 3120-3130.	2.2	7
193	The sacrificial adaptor protein Skp functions to remove stalled substrates from the \hat{l}^2 -barrel assembly machine. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	7
194	Fine-Tuning of \ddot{l}_f E Activation Suppresses Multiple Assembly-Defective Mutations in Escherichia coli. Journal of Bacteriology, 2019, 201, .	2.2	6
195	Symbiotic Expression of Rhizobium meliloti Nitrogen Fixation Genes Is Regulated by Oxygen. , 0, , 275-287.		6
196	Synthesis of 1-(p-iodobenzenesulfonyl)-3,5-dipropyl isocyanurate. Journal of Organic Chemistry, 1972, 37, 3357-3358.	3.2	5
197	ASM Journals Eliminate Impact Factor Information from Journal Websites. MSphere, 2016, 1, .	2.9	5

 $Synthesis \ and \ Pharmacological \ Activity \ of \ 1-(arylsulfonyl)-3,5-dialkyl-s-triazine-2,4,6-(1H,) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overlogck \ 10 \ Tf \ 50 \ 62 \ Td \ (30,0) \ rgBT \ /Overlogck \ 10 \ Tf \ 50 \ 62 \ Td \ (30,0) \ rgBT \ /Overlogck \ 10 \ Tf \ 50 \ 62 \ Td \ (30,0) \ rgBT \ /Overlogck \ 10 \ Tf \ 50 \ 62 \ Td \ (30,0) \ rgBT \ /Overlogck \ 10 \ Tf \ 50 \ 62 \ Td \ (30,0) \ rgBT \ /Overlogck \ 10 \ Tf \ 50 \ 62 \ Td \ (30,0) \ rgBT \ /Overlogck \ 10 \ Tf \ 50 \ 62 \ Td \ (30,0) \ rgBT \ /Overlogck \ 10 \ Tf \ 50 \ 62 \ Td \ (30,0) \ rgBT \ /Overlogck \ 10 \ Tf \ 50 \ 62 \ Td \ (30,0) \ rgBT \ /Overlogck \ 10 \ Tf \ 50 \ 62 \ Td \ (30,0) \ rgBT \ /Overlogck \ 10 \ Tf \ 50 \ 62 \ Td \ (30,0) \ rgBT \ /Overlogck \ 10 \ Tf \ 50 \ Fd \ 10 \ Tf \ 50 \ Tf \ 10 \ Tf \ 50 \ Tf \ 10 \ Tf \ 10$

12

198

#	Article	IF	CITATIONS
199	Germ Warfare: The Mechanisms of Virulence Factor Delivery. , 2001, , 43-74.		4
200	ASM Journals Eliminate Impact Factor Information from Journal Websites. Clinical Microbiology Reviews, 2016, 29, i-ii.	13.6	4
201	Outer Membrane Protein Insertion by the \hat{l}^2 -barrel Assembly Machine. , 0, , 91-101.		4
202	Protein secretion in bacteria: a chemotherapeutic target?., 1992,, 163-175.		4
203	ASM Journals Eliminate Impact Factor Information from Journal Websites. MSystems, 2016, 1, .	3.8	3
204	ASM Journals Eliminate Impact Factor Information from Journal Websites. Antimicrobial Agents and Chemotherapy, 2016, 60, 5109-5110.	3.2	3
205	The ASM Journals Committee Values the Contributions of Black Microbiologists. MBio, 2020, 11, .	4.1	3
206	Sex to the rescue. Nature Methods, 2008, 5, 759-760.	19.0	2
207	The <i>Journal of Bacteriology</i> Is 100. Journal of Bacteriology, 2016, 198, 1-3.	2.2	2
208	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Microbiology and Biology Education, 2020, 21, .	1.0	2
209	Regulation of Glycopeptide Resistance Genes of Enterococcal Transposon Tn1546 by the VanR-VanS Two-Component Regulatory System., 0,, 387-391.		2
210	The Identification of the YaeT Complex and Its Role in the Assembly of Bacterial Outer Membrane $\hat{l}^2\hat{a}$ \in Barrel Proteins. The Enzymes, 2007, , 129-149.	1.7	1
211	2014 Jack Kenney Award for Outstanding Service. Journal of Bacteriology, 2015, 197, 3-3.	2.2	1
212	ASM Journals Eliminate Impact Factor Information from Journal Websites. Applied and Environmental Microbiology, 2016, 82, 5479-5480.	3.1	1
213	ASM Journals Eliminate Impact Factor Information from Journal Websites. Microbiology and Molecular Biology Reviews, 2016, 80, i-ii.	6.6	1
214	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Clinical Microbiology, 2020, 58, .	3.9	1
215	The ASM Journals Committee Values the Contributions of Black Microbiologists. Applied and Environmental Microbiology, 2020, 86, .	3.1	1
216	The ASM Journals Committee Values the Contributions of Black Microbiologists. MSphere, 2020, 5, .	2.9	1

#	Article	IF	Citations
217	Time To Go. Journal of Bacteriology, 2020, 203, .	2.2	1
218	The ASM Journals Committee Values the Contributions of Black Microbiologists. Clinical Microbiology Reviews, 2020, 33, .	13.6	1
219	Cell regulation: continually redefining the rules. Current Opinion in Microbiology, 1998, 1, 141-144.	5.1	0
220	Robert A. Weisberg (1937–2011). Journal of Bacteriology, 2011, 193, 6807-6807.	2.2	0
221	Acknowledgment of <i>Ad Hoc</i> Reviewers. Journal of Bacteriology, 2015, 197, 3744-3747.	2.2	0
222	Editorial and Policy Changes for 2015. Journal of Bacteriology, 2015, 197, 2-2.	2.2	0
223	2015 Jack Kenney Award for Outstanding Service. Journal of Bacteriology, 2016, 198, 4-4.	2.2	O
224	Classic Spotlight: a Very Pleiotropic Mutant. Journal of Bacteriology, 2016, 198, 371-371.	2.2	0
225	Classic Spotlight: the Birth of the Transcriptional Activator. Journal of Bacteriology, 2016, 198, 744-744.	2.2	0
226	Classic Spotlight: Selected Highlights from the First 100 Years of the $\langle i \rangle$ Journal of Bacteriology $\langle i \rangle$. Journal of Bacteriology, 2017, 199, .	2.2	0
227	State of the Journal. Journal of Bacteriology, 2017, 199, .	2.2	0
228	2016 Jack Kenney Award for Outstanding Service. Journal of Bacteriology, 2017, 199, .	2.2	0
229	Acknowledgment of <i>Ad Hoc</i> Reviewers. Journal of Bacteriology, 2017, 199, .	2.2	0
230	2017 Jack Kenney Award for Outstanding Service. Journal of Bacteriology, 2018, 200, .	2.2	0
231	State of the Journal. Journal of Bacteriology, 2018, 200, .	2.2	0
232	Acknowledgment of <i>Ad Hoc</i> Reviewers. Journal of Bacteriology, 2018, 200, .	2.2	0
233	Olaf Schneewind, 1961–2019: Scientist, Mentor, Friend. Journal of Bacteriology, 2019, 201, .	2.2	0
234	2019 Jack Kenney Award for Outstanding Service. Journal of Bacteriology, 2019, 202, .	2.2	0

#	Article	IF	CITATIONS
235	Current Issues in Scientific Publishing. Journal of Bacteriology, 2019, 202, .	2.2	0
236	2018 Jack Kenney Award for Outstanding Service. Journal of Bacteriology, 2019, 201, .	2.2	0
237	State of the Journal. Journal of Bacteriology, 2019, 201, .	2.2	0
238	The ASM Journals Committee Values the Contributions of Black Microbiologists. Infection and Immunity, 2020, 88, .	2.2	0
239	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology Spectrum, 2020, 8, .	3.0	0
240	The ASM Journals Committee Values the Contributions of Black Microbiologists. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	0
241	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Virology, 2020, 94, .	3.4	0
242	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Bacteriology, 2020, 202, .	2.2	0
243	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology and Molecular Biology Reviews, 2020, 84, .	6.6	0
244	The ASM Journals Committee Values the Contributions of Black Microbiologists. MSystems, 2020, 5, .	3.8	0
245	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology Resource Announcements, 2020, 9, .	0.6	0
246	Acknowledgment of <i>Ad Hoc</i> Reviewers. Journal of Bacteriology, 2019, 201, .	2.2	0
247	The ASM Journals Committee Values the Contributions of Black Microbiologists. Molecular and Cellular Biology, 2020, 40, .	2.3	0
248	2020 Jack Kenney Award for Outstanding Service. Journal of Bacteriology, 2020, 203, .	2.2	0
249	Acknowledgment of <i>Ad Hoc</i> Reviewers. Journal of Bacteriology, 2020, 202, .	2.2	O