Farshid Sadeghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1279463/publications.pdf

Version: 2024-02-01

		70961	123241
197	5,891	41	61
papers	citations	h-index	g-index
198	198	198	2158
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Three-Dimensional Finite Element Damage Mechanics Model to Simulate Fretting Wear of Hertzian Line and Circular Contacts in Partial Slip Regime. Journal of Tribology, 2022, 144, .	1.0	6
2	Retained austenite stability on rolling contact fatigue performance of 8620 case arburized steel. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 55-68.	1.7	6
3	Analytical Investigation of Roller Skew and Tilt in a Spherical Roller Bearing. Journal of Tribology, 2022, 144, .	1.0	5
4	Experimental Investigation of Cage Dynamics and Ball-Cage Contact Forces in an Angular Contact Ball Bearing. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2022, 236, 2522-2534.	1.0	11
5	Rolling contact fatigue of coupled EHL and anisotropic polycrystalline materials. Tribology International, 2022, 169, 107479.	3.0	8
6	A CFD-FEM based partitioned fluid structure interaction model to investigate surface cracks in elastohydrodynamic lubricated line contacts. Tribology International, 2022, 171, 107532.	3.0	9
7	Effect of spatial hardness distribution in rolling contact fatigue performance of bearing contacts. Tribology International, 2022, 171, 107550.	3.0	8
8	A crystal plasticity and cohesive element model for rolling contact fatigue of bearing steels. Tribology International, 2022, 173, 107607.	3.0	4
9	The effects of lubricant starvation on ball bearing cage pocket friction. Tribology International, 2022, 173, 107630.	3.0	15
10	An Efficient Cavitation Model for Compressible Fluid Film Bearings. Tribology Transactions, 2021, 64, 434-453.	1.1	10
11	A continuum damage mechanics finite element model for investigating effects of surface roughness on rolling contact fatigue. International Journal of Fatigue, 2021, 143, 105986.	2.8	39
12	Finite element modeling of fretting wear in anisotropic composite coatings: Application to HVOF Cr3C2–NiCr coating. Tribology International, 2021, 155, 106765.	3.0	18
13	A CFD investigation of lubricant flow in deep groove ball bearings. Tribology International, 2021, 154, 106735.	3.0	33
14	Experimental and Analytical Investigation of Turbocharger Whirl and Dynamics. Tribology Transactions, 2021, 64, 239-252.	1.1	7
15	Fluid–Structure Interaction Modeling of Elastohydrodynamically Lubricated Line Contacts. Journal of Tribology, 2021, 143, .	1.0	15
16	An approach for predicting failure mechanism in rough surface rolling contact fatigue. Tribology International, 2021, 158, 106923.	3.0	17
17	A Novel Test Rig for the Investigation of Ball Bearing Cage Friction. Tribology Transactions, 2021, 64, 943-955.	1.1	19
18	Effects of Grain Refinement on Rolling Contact Fatigue in Bearing Contacts. Journal of Tribology, 2021, 143, .	1.0	8

#	Article	IF	Citations
19	Experimental and analytical investigation of fluid drag losses in rolling element bearings. Tribology International, 2021, 161, 107106.	3.0	18
20	A Novel Three-Dimensional Finite Element Model to Simulate Third Body Effects on Fretting Wear of Hertzian Point Contact in Partial Slip. Journal of Tribology, 2021, 143, .	1.0	10
21	In Memoriam Of Professor Duncan Dowson. Proceedings of the Institution of Mechanical Engineers, Part J. Journal of Engineering Tribology, 2021, 235, 2566-2566.	1.0	0
22	Surface modification effects on lubricant temperature and floating valve plate motion in an axial piston pump. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234, 3-17.	1.0	9
23	A 3D Finite Element Model for Investigating Effects of Refurbishing on Rolling Contact Fatigue. Tribology Transactions, 2020, 63, 251-264.	1.1	1
24	A method to model crystalline anisotropy in contact using semi-analytical method. Tribology International, 2020, 152, 106429.	3.0	4
25	Residual stress formation and stability in bearing steels due to fatigue induced retained austenite transformation. International Journal of Fatigue, 2020, 136, 105610.	2.8	16
26	Experimental investigation of fretting wear of coated spring clip and inlet ring in land-based gas turbines at elevated temperature. Wear, 2020, 446-447, 203200.	1.5	5
27	A Strongly Coupled Finite Difference Method–Finite Element Method Model for Two-Dimensional Elastohydrodynamically Lubricated Contact. Journal of Tribology, 2020, 142, .	1.0	9
28	An anisotropic damage model for tensile fatigue. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 129-142.	1.7	8
29	Experimental Investigation of the Dynamic Loads in a Ball Bearing Turbocharger. Journal of Tribology, 2019, 141, .	1.0	3
30	A continuum damage mechanics framework for modeling the effect of crystalline anisotropy on rolling contact fatigue. Tribology International, 2019, 140, 105845.	3.0	30
31	A microstructure based approach to model effects of surface roughness on tensile fatigue. International Journal of Fatigue, 2019, 129, 105229.	2.8	30
32	A coupled damage model and a semi-analytical contact solver to simulate butterfly wing formation around nonmetallic inclusions. International Journal of Fatigue, 2019, 127, 445-460.	2.8	8
33	Predicting Material Performance in Rolling Contact Fatigue via Torsional Fatigue. Tribology Transactions, 2019, 62, 614-625.	1.1	14
34	Upcycling of Spent Lithium Cobalt Oxide Cathodes from Discarded Lithium-lon Batteries as Solid Lubricant Additive. Environmental Science & Environment	4.6	27
35	Using $\hat{A}\mu\text{PIV}$ to Investigate Fluid Flow in a Pocketed Thrust Bearing. Tribology Transactions, 2019, 62, 350-361.	1.1	8
36	Binder mediated enhanced surface adhesion of cured dry solid lubricant on bearing steel for significant friction and wear reduction under high contact pressure. Carbon, 2019, 146, 588-596.	5.4	16

3

#	Article	IF	CITATIONS
37	Experimental and numerical investigation of torsion fatigue of a nickel-based alloy at elevated temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 751, 263-270.	2.6	5
38	A Coupled Multibody Finite Element Model for Investigating Effects of Surface Defects on Rolling Contact Fatigue. Journal of Tribology, 2019, 141, .	1.0	26
39	Dynamic Modeling of Floating Valve Plate Motion in an Axial Piston Pump. Tribology Transactions, 2018, 61, 683-693.	1.1	12
40	A Wireless Sensor Telemeter for in situ Cage Vibration Measurement and Corroboration with Analytical Results. Tribology Transactions, 2018, 61, 1013-1026.	1.1	4
41	A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue. International Journal of Fatigue, 2018, 106, 92-102.	2.8	39
42	A Novel Modeling Approach to Simulate Rolling Contact Fatigue and Three-Dimensional Spalls. Journal of Tribology, 2018, 140, .	1.0	12
43	A novel approach for modeling retained austenite transformations during rolling contact fatigue. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 831-843.	1.7	6
44	A 3D efficient finite element model to simulate rolling contact fatigue under high loading conditions. Tribology International, 2018, 126, 258-269.	3.0	25
45	In-situ friction and fretting wear measurements of Inconel 617 at elevated temperatures. Wear, 2018, 410-411, 110-118.	1.5	35
46	Effect of Residual Stresses on Microstructural Evolution Due to Rolling Contact Fatigue. Journal of Tribology, 2018, 140, .	1.0	13
47	Experimental and Analytical Investigation of Floating Valve Plate Motion in an Axial Piston Pump. Tribology Transactions, 2017, 60, 537-547.	1.1	16
48	Investigation of Turbocharger Dynamics Using a Combined Explicit Finite and Discrete Element Method Rotor–Cartridge Model. Journal of Tribology, 2017, 139, .	1.0	12
49	A New Approach for Fatigue Damage Modeling of Subsurface-Initiated Spalling in Large Rolling Contacts. Journal of Tribology, 2017, 139, .	1.0	24
50	Closure to "Discussion of â€~A New Approach for Fatigue Damage Modeling of Subsurface-Initiated Spalling in Large Rolling Contacts'―(2016, ASME J. Tribol., 139(3), p. 035501). Journal of Tribology, 2017, 139, .	1.0	0
51	Rolling contact fatigue in refurbished case carburized bearings. Tribology International, 2017, 115, 348-364.	3.0	35
52	A Combined EFEM–Discrete Element Method Dynamic Model of Rotor–Bearing–Housing System. Journal of Tribology, 2017, 139, .	1.0	10
53	Experimental and analytical investigation of effects of refurbishing on rolling contact fatigue. Wear, 2017, 392-393, 190-201.	1.5	13
54	Novel tertiary dry solid lubricant on steel surfaces reduces significant friction and wear under high load conditions. Carbon, 2017, 123, 7-17.	5.4	28

#	Article	IF	Citations
55	EHL modeling of nonhomogeneous materials: The effects of polycrystalline anisotropy on RCF. Tribology International, 2017, 112, 137-146.	3.0	13
56	Nonlinear vibration analysis of fractional viscoelastic Euler–Bernoulli nanobeams based on the surface stress theory. Acta Mechanica Solida Sinica, 2017, 30, 416-424.	1.0	48
57	A coupled finite element EHL and continuum damage mechanics model for rolling contact fatigue. Tribology International, 2017, 107, 173-183.	3.0	42
58	Rolling contact fatigue of case carburized steels. International Journal of Fatigue, 2017, 95, 264-281.	2.8	91
59	An Explicit Finite-Element Model to Investigate the Effects of Elastomeric Bushing on Bearing Dynamics. Journal of Tribology, 2016, 138, .	1.0	9
60	A 3D numerical and experimental investigation of microstructural alterations around non-metallic inclusions in bearing steel. International Journal of Fatigue, 2016, 88, 29-41.	2.8	24
61	Experimental Investigation of the Correlation Between Adhesion and Friction Forces. Tribology Letters, 2016, 62, 1.	1.2	7
62	MoS2 nanolayer coated carbon spheres as an oil additive for enhanced tribological performance. Carbon, 2016, 110, 367-377.	5.4	57
63	Adhesion and Friction Force Measurements Using an Optical Micro-Apparatus. Tribology Letters, 2016, 64, 1.	1.2	3
64	Effect of Housing Support on Bearing Dynamics. Journal of Tribology, 2016, 138, .	1.0	8
65	A Review of Microstructural Alterations around Nonmetallic Inclusions in Bearing Steel during Rolling Contact Fatigue. Tribology Transactions, 2016, 59, 1142-1156.	1.1	28
66	An elastic–plastic investigation of third body effects on fretting contact in partial slip. International Journal of Solids and Structures, 2016, 81, 95-109.	1.3	29
67	A Damage Mechanics Approach to Simulate Butterfly Wing Formation Around Nonmetallic Inclusions. Journal of Tribology, 2015, 137, .	1.0	16
68	A finite element model for rolling contact fatigue of refurbished bearings. Tribology International, 2015, 85, 1-9.	3.0	22
69	Ultrasmooth Submicrometer Carbon Spheres as Lubricant Additives for Friction and Wear Reduction. ACS Applied Materials & Damp; Interfaces, 2015, 7, 5514-5521.	4.0	105
70	A novel approach to model effects of surface roughness parameters on wear. Wear, 2015, 338-339, 73-94.	1.5	62
71	Combined Explicit Finite and Discrete Element Methods for Rotor Bearing Dynamic Modeling. Tribology Transactions, 2015, 58, 300-315.	1.1	28
72	Effect of retained austenite – Compressive residual stresses on rolling contact fatigue life of carburized AISI 8620 steel. International Journal of Fatigue, 2015, 75, 135-144.	2.8	94

#	Article	IF	CITATIONS
73	Effect of non-metallic inclusions on butterfly wing initiation, crack formation, and spall geometry in bearing steels. International Journal of Fatigue, 2015, 80, 203-215.	2.8	69
74	A fracture mechanics approach to simulate sub-surface initiated fretting wear. International Journal of Solids and Structures, 2015, 58, 335-352.	1.3	19
75	Temperature Distribution in Pocketed Thrust Washers. Tribology Transactions, 2015, 58, 31-43.	1.1	5
76	Three-Dimensional Finite Element Elastic–Plastic Model for Subsurface Initiated Spalling in Rolling Contacts. Journal of Tribology, 2014, 136, .	1.0	30
77	Microstructural Alterations in Bearing Steels under Rolling Contact Fatigue: Part 2—Diffusion-Based Modeling Approach. Tribology Transactions, 2014, 57, 66-76.	1.1	18
78	Third body modeling in fretting using the combined finite-discrete element method. International Journal of Solids and Structures, 2014, 51, 1375-1389.	1.3	32
79	Effects of crystal elasticity on rolling contact fatigue. International Journal of Fatigue, 2014, 61, 67-75.	2.8	39
80	Effects of compressive stresses on torsional fatigue. Tribology International, 2014, 77, 196-210.	3.0	17
81	An experimental study and fatigue damage model for fretting fatigue. Tribology International, 2014, 79, 183-196.	3.0	39
82	Whirl and Friction Characteristics of High Speed Floating Ring and Ball Bearing Turbochargers. Journal of Tribology, 2013, 135, .	1.0	20
83	A stress based damage mechanics model to simulate fretting wear of Hertzian line contact in partial slip. Wear, 2013, 307, 87-99.	1.5	63
84	Rough surface and damage mechanics wear modeling using the combined finite-discrete element method. Wear, 2013, 305, 312-321.	1.5	29
85	Numerical modeling of sub-surface initiated spalling in rolling contacts. Tribology International, 2013, 59, 210-221.	3.0	64
86	Highly Reliable MEMS Temperature Sensors for 275 \$^{ circ}hbox{C}\$ Applicationsâ€"Part 2: Creep and Cycling Performance. Journal of Microelectromechanical Systems, 2013, 22, 236-243.	1.7	8
87	Estimating Life Scatter in Fretting Fatigue Crack Initiation. Tribology Transactions, 2013, 56, 531-535.	1.1	16
88	Experimental and Numerical Investigation of Torsion Fatigue of Bearing Steel. Journal of Tribology, 2013, 135, .	1.0	38
89	Hydrodynamic Pressure Generation in a Pocketed Thrust Washer. Tribology Transactions, 2013, 56, 652-662.	1.1	8
90	An Improved Approach for 3D Rolling Contact Fatigue Simulations with Microstructure Topology. Tribology Transactions, 2013, 56, 385-399.	1.1	41

#	Article	IF	Citations
91	Microstructural Alterations in Bearing Steels under Rolling Contact Fatigue Part 1—Historical Overview. Tribology Transactions, 2013, 56, 349-358.	1.1	55
92	Influence of Plasticity-Induced Residual Stresses on Rolling Contact Fatigue. Tribology Transactions, 2012, 55, 422-437.	1.1	26
93	A New Approach for Including Cage Flexibility in Dynamic Bearing Models by Using Combined Explicit Finite and Discrete Element Methods. Journal of Tribology, 2012, 134, .	1.0	59
94	A Numerical and Experimental Investigation of Fretting Wear and a New Procedure for Fretting Wear Maps. Tribology Transactions, 2012, 55, 313-324.	1.1	42
95	Flow Visualization in a Pocketed Thrust Washer. Tribology Transactions, 2012, 55, 571-581.	1.1	30
96	Experimental and numerical investigation of fatigue of thin tensile specimen. International Journal of Fatigue, 2012, 44, 116-130.	2.8	25
97	Effects of plasticity on subsurface initiated spalling in rolling contact fatigue. International Journal of Fatigue, 2012, 36, 80-95.	2.8	116
98	High temperature dynamic viscosity sensor for engine oil applications. Sensors and Actuators A: Physical, 2012, 173, 102-107.	2.0	36
99	A novel modular fretting wear test rig. Wear, 2012, 274-275, 313-325.	1.5	21
100	Threeâ€dimensional modelling of intergranular fatigue failure of fine grain polycrystalline metallic MEMS devices. Fatigue and Fracture of Engineering Materials and Structures, 2012, 35, 1007-1021.	1.7	25
101	Cohesive zone modeling of intergranular fatigue damage in rolling contacts. Tribology International, 2011, 44, 797-804.	3.0	41
102	On the Effect of Isotropic Hardening on the Coefficient of Restitution for Single or Repeated Impacts Using a Semi-Analytical Method. Tribology Transactions, 2011, 54, 714-722.	1.1	29
103	Experimental Investigation of Lubricant Extraction from a Micropocket. Tribology Transactions, 2011, 54, 404-416.	1.1	10
104	Material Inclusion Factors for Lundberg-Palmgren–Based RCF Life Equations. Tribology Transactions, 2011, 54, 457-469.	1.1	30
105	Fretting Wear Modeling of Coated and Uncoated Surfaces Using the Combined Finite-Discrete Element Method. Journal of Tribology, 2011, 133, .	1.0	28
106	A 3D Finite Element Study of Fatigue Life Dispersion in Rolling Line Contacts. Journal of Tribology, 2011, 133, .	1.0	33
107	Remotely powered wireless strain telemeter. , 2011, , .		0
108	Experimental and Analytical Investigation of High Speed Turbocharger Ball Bearings. Journal of Engineering for Gas Turbines and Power, 2011, 133, .	0.5	24

#	Article	IF	CITATIONS
109	A new finite element fatigue modeling approach for life scatter in tensile steel specimens. International Journal of Fatigue, 2010, 32, 685-697.	2.8	45
110	Explicit finite element modeling of subsurface initiated spalling in rolling contacts. Tribology International, 2010, 43, 1693-1702.	3.0	108
111	Effects of surface defects on rolling contact fatigue of heavily loaded lubricated contacts. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224, 1061-1077.	1.0	41
112	Elastohydrodynamic lubrication. , 2010, , 171-226e.		6
113	An Approach for Modeling Material Grain Structure in Investigations of Hertzian Subsurface Stresses and Rolling Contact Fatigue. Journal of Tribology, 2010, 132, .	1.0	43
114	A Voronoi FE Fatigue Damage Model for Life Scatter in Rolling Contacts. Journal of Tribology, 2010, 132, .	1.0	60
115	Bearing cage telemeter for the detection of shaft imbalance in rotating systems. , 2010, , .		4
116	Surface defects effects on bearing dynamics. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224, 25-35.	1.0	34
117	Fretting of WC/a-C:H and Cr ₂ N Coatings Under Grease-Lubricated and Unlubricated Conditions. Tribology Transactions, 2009, 53, 145-153.	1.1	20
118	A Discrete Element Approach for Modeling Cage Flexibility in Ball Bearing Dynamics Simulations. Journal of Tribology, 2009, 131, .	1.0	68
119	A Voronoi Finite Element Study of Fatigue Life Scatter in Rolling Contacts. Journal of Tribology, 2009, 131, .	1.0	61
120	Statistical numerical modelling of sub-surface initiated spalling in bearing contacts. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2009, 223, 849-858.	1.0	19
121	Analytical formulation of mode-coupling instability in disc–pad coupled system. International Journal of Mechanical Sciences, 2009, 51, 52-63.	3 . 6	49
122	Oscillation pattern of stick–slip vibrations. International Journal of Non-Linear Mechanics, 2009, 44, 820-828.	1.4	41
123	A discrete damage mechanics model for high cycle fatigue in polycrystalline materials subject to rolling contact. International Journal of Fatigue, 2009, 31, 346-360.	2.8	55
124	Comprehensive stability analysis of disc brake vibrations including gyroscopic, negative friction slope and mode-coupling mechanisms. Journal of Sound and Vibration, 2009, 324, 387-407.	2.1	67
125	Wave pattern motion and stick–slip limit cycle oscillation of a disc brake. Journal of Sound and Vibration, 2009, 325, 552-564.	2.1	28
126	A Review of Rolling Contact Fatigue. Journal of Tribology, 2009, 131, .	1.0	399

#	Article	IF	CITATIONS
127	An inherently-robust 300°C MEMS temperature sensor for wireless health monitoring of ball and rolling element bearings. , 2009, , .		13
128	A Phenomenological Discrete Brittle Damage-Mechanics Model for Fatigue of MEMS Devices With Application to LIGA Ni. Journal of Microelectromechanical Systems, 2009, 18, 119-128.	1.7	11
129	Investigation of Fluid Flow Out of a Microcavity Using \hat{l}^4 PIV. Tribology Transactions, 2009, 52, 817-832.	1.1	13
130	Dynamic instability of a thin circular plate with friction interface and its application to disc brake squeal. Journal of Sound and Vibration, 2008, 316, 164-179.	2.1	65
131	Fretting fatigue of rough surfaces. Wear, 2008, 264, 719-730.	1.5	28
132	A New Approach to Modeling Surface Defects in Bearing Dynamics Simulations. Journal of Tribology, 2008, 130, .	1.0	66
133	Numerical Modeling of Mixed Lubrication and Flash Temperature in EHL Elliptical Contacts. Journal of Tribology, 2008, 130, .	1.0	31
134	A Statistical Damage Mechanics Model for Subsurface Initiated Spalling in Rolling Contacts. Journal of Tribology, 2008, 130, .	1.0	86
135	Gaseous Cavitation and Wear in Lubricated Fretting Contacts. Tribology Transactions, 2008, 51, 351-360.	1.1	14
136	A Numerical Model for Life Scatter in Rolling Element Bearings. Journal of Tribology, 2008, 130, .	1.0	41
137	Performance Characteristics of Jet Fuel in Heavily Loaded Contacts. Tribology Transactions, 2007, 50, 154-164.	1.1	3
138	Evaluation of Stresses Around Inclusions in Hertzian Contacts Using the Discrete Element Method. Journal of Tribology, 2007, 129, 283-291.	1.0	19
139	Early-Warning Wireless Telemeter for Harsh-Environment Bearings. , 2007, , .		24
140	EHL Modeling for Nonhomogeneous Materials: The Effect of Material Inclusions. Journal of Tribology, 2007, 129, 256-273.	1.0	16
141	Modeling of fretting wear evolution in rough circular contacts in partial slip. International Journal of Mechanical Sciences, 2007, 49, 690-703.	3.6	43
142	Fatigue Life Reduction in Mixed Lubricated Elliptical Contacts. Tribology Letters, 2007, 27, 197-209.	1.2	15
143	A discrete element approach to evaluate stresses due to line loading on an elastic half-space. Computational Mechanics, 2007, 40, 513.	2.2	13
144	The Effects of Cage Flexibility on Ball-to-Cage Pocket Contact Forces and Cage Instability in Deep Groove Ball Bearings. , 2006, , .		10

#	Article	lF	Citations
145	Effect of surface roughness on normal contact compression response. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2006, 220, 65-77.	1.0	5
146	The Effects of a Stationary Surface Pocket on EHL Line Contact Start-Up. Journal of Tribology, 2004, 126, 672-680.	1.0	27
147	Cage Instabilities in Cylindrical Roller Bearings. Journal of Tribology, 2004, 126, 681-689.	1.0	123
148	A Finite Element Model for Spherical Debris Denting in Heavily Loaded Contacts. Journal of Tribology, 2004, 126, 71-80.	1.0	30
149	Analysis of EHL Circular Contact Shut Down. Journal of Tribology, 2003, 125, 76-90.	1.0	38
150	Effect of Temperature on Thermoelastic Instability in Thin Disks. Journal of Tribology, 2002, 124, 429-437.	1.0	19
151	Thermal Effects in Thrust Washer Lubrication. Journal of Tribology, 2002, 124, 166-177.	1.0	24
152	Bearing cage temperature measurement using radio telemetry. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2001, 215, 471-481.	1.0	18
153	Analysis of EHL Circular Contact Start Up: Part II—Surface Temperature Rise Model and Results. Journal of Tribology, 2001, 123, 75-82.	1.0	26
154	Analysis of EHL Circular Contact Start Up: Part l—Mixed Contact Model With Pressure and Film Thickness Results. Journal of Tribology, 2001, 123, 67-74.	1.0	68
155	Groove Effects on Thrust Washer Lubrication. Journal of Tribology, 2001, 123, 295-304.	1.0	60
156	Debris Effects on EHL Contact. Journal of Tribology, 2000, 122, 711-720.	1.0	13
157	A Finite Element Analysis of Surface Pocket Effects in Hertzian Line Contact. Journal of Tribology, 2000, 122, 47-54.	1.0	21
158	A Simplified Approach to Modeling Thermal Effects in Wet Clutch Engagement: Analytical and Experimental Comparison. Journal of Tribology, 2000, 122, 110-118.	1.0	37
159	The Effect of Surface Layer with Bleeding Properties in Rolling/Sliding Contact. Tribology Transactions, 2000, 43, 123-129.	1.1	0
160	Vibration in Grease Lubricated Bearing Systems. Tribology Transactions, 2000, 43, 403-410.	1.1	8
161	Dent Initiated Spall Formation in EHL Rolling/Sliding Contact. Journal of Tribology, 1998, 120, 453-462.	1.0	33
162	In Situ Tribocomponent Temperature Measurement Using a Radio Telemeter. Tribology Transactions, 1997, 40, 514-520.	1.1	12

#	Article	IF	CITATIONS
163	Numerical Analysis of Temperature Distribution at the Lip Seal-Shaft Interface. Journal of Tribology, 1997, 119, 273-278.	1.0	18
164	Stability of Sliding in a System Excited by a Rough Moving Surface. Journal of Tribology, 1997, 119, 672-680.	1.0	22
165	Analytical and Numerical Modeling of Engagement of Rough, Permeable, Grooved Wet Clutches. Journal of Tribology, 1997, 119, 143-148.	1.0	78
166	Residual Stresses Due to Debris Effects in EHL Contacts. Tribology Transactions, 1997, 40, 613-620.	1.1	29
167	Debris Denting Effects on Elastohydrodynamic Lubricated Contacts. Journal of Tribology, 1997, 119, 579-587.	1.0	37
168	Torque Transmission Characteristics of Automatic Transmission Wet Clutches: Experimental Results and Numerical Comparison. Tribology Transactions, 1997, 40, 539-548.	1.1	35
169	Finite Element Modeling of Engagement of Rough and Grooved Wet Clutches. Journal of Tribology, 1996, 118, 137-146.	1.0	98
170	Internal Stresses in Contact of a Rough Body and a Viscoelastic Layered Semi-Infinite Plane. Journal of Tribology, 1996, 118, 131-136.	1.0	20
171	Elastoplastohydrodynamic Lubrication with Dent Effects. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1996, 210, 233-245.	1.0	14
172	Spall initiation and propagation due to debris denting. Wear, 1996, 201, 106-116.	1.5	48
173	Performance Characteristics of Perfluoroalkylpolyether Synthetic Lubricants. Tribology Transactions, 1996, 39, 849-854.	1.1	7
174	Radius of Curvature and Entraining Velocity of Cam Follower Mechanisms. Tribology Transactions, 1996, 39, 899-907.	1.1	6
175	Thermal EHL Analysis of Circular Contacts With Measured Surface Roughness. Journal of Tribology, 1996, 118, 473-482.	1.0	85
176	Contact characteristics of a rolling/sliding cylinder and a viscoelastic layer bonded to an elastic substrate. Wear, 1995, 184, 125-132.	1.5	52
177	Computer-aided design/engineering of bearing systems using the Dempster-Shafer theory. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 1995, 9, 1-11.	0.7	11
178	Effects of a Single Bump or Dent in Time Dependent Thermal Line EHD Lubrication. Journal of Tribology, 1994, 116, 9-20.	1.0	6
179	Three-Dimensional Temperature Distribution in EHD Lubrication: Part II—Point Contact and Numerical Formulation. Journal of Tribology, 1993, 115, 36-45.	1.0	40
180	The Normal Approach and Stick-Slip Phenomena at the Interface of Two Rough Bodies. Journal of Tribology, 1993, 115, 445-452.	1.0	6

#	Article	IF	Citations
181	Three-Dimensional Temperature Distribution in EHD Lubrication: Part lâ€"Circular Contact. Journal of Tribology, 1992, 114, 32-41.	1.0	61
182	Time Dependent Line EHD Lubrication Using the Multigrid/Multilevel Technique. Journal of Tribology, 1992, 114, 68-74.	1.0	40
183	Formulas Used in Thermal Elastohydrodynamic Lubrication. Tribology Transactions, 1991, 34, 588-596.	1.1	12
184	Closure to "Discussion of â€~A Comparison of the Fluid Models Effect on the Internal Stresses of Rough Surfaces'―(1991, ASME J. Tribol., 113, p. 149). Journal of Tribology, 1991, 113, 149-149.	1.0	1
185	Thermoelastic Effects in Lubricated Rolling/Sliding Line Contacts. Journal of Tribology, 1991, 113, 174-181.	1.0	3
186	Closure to "Discussion of â€~Non-Newtonian Thermal Elastohydrodynamic Lubrication'―(1991, ASME J.)	Tj _{1.0} TQq0	0 0 0 rgBT /Ov
187	A Comparison of the Fluid Models Effect on the Internal Stresses of Rough Surfaces. Journal of Tribology, 1991, 113, 142-149.	1.0	16
188	Non-Newtonian Thermal Elastohydrodynamic Lubrication. Journal of Tribology, 1991, 113, 390-396.	1.0	55
189	Non-Newtonian Elastohydrodynamic Lubrication of Point Contact. Journal of Tribology, 1991, 113, 703-711.	1.0	49
190	Thermal Elastohydrodynamic Lubrication of Rough Surfaces. Journal of Tribology, 1990, 112, 341-346.	1.0	22
191	Thermal Elastohydrodynamic Lubrication of Rolling/Sliding Contacts. Journal of Tribology, 1990, 112, 189-195.	1.0	76
192	Compressible Elastohydrodynamic Lubrication of Rough Surfaces. Journal of Tribology, 1989, 111, 56-62.	1.0	26
193	Internal Stresses in Elastohydrodynamic Lubrication of Rolling/Sliding Contacts. Journal of Tribology, 1989, 111, 180-187.	1.0	4
194	Thermal Effects in Rolling/Sliding Contacts: Part 2â€"Analysis of Thermal Effects in Fluid Film. Journal of Tribology, 1987, 109, 512-517.	1.0	29
195	Thermal Effects in Rolling/Sliding Contacts: Part 3â€"Approximate Method for Prediction of Mid-Film Temperature and Sliding Traction. Journal of Tribology, 1987, 109, 519-523.	1.0	19
196	Closure to "Discussion of †Thermal Effects in Rolling/Sliding Contacts: Part 2†"Analysis of Thermal Effects in Fluid Film'―(1987, ASME J. Tribol., 109, p. 518). Journal of Tribology, 1987, 109, 518-518.	1.0	0
197	Closure to "Discussion of †Thermal Effects in Rolling/Sliding Contacts: Part 3†Approximate Method for Prediction of Mid-Film Temperature and Sliding Traction'―(1987, ASME J. Tribol., 109, p. 523). Journal of Tribology, 1987, 109, 523-524.	1.0	1