Youliang Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1279070/publications.pdf

Version: 2024-02-01

24 papers 1,164 citations

687363 13 h-index 677142 22 g-index

24 all docs

24 docs citations

times ranked

24

1950 citing authors

#	Article	IF	Citations
1	Construction of a drug-containing microenvironment for <i>in situ</i> bone regeneration. Materials Advances, 2022, 3, 4295-4309.	5.4	1
2	Construction of the Gypsum-Coated Scaffolds for In Situ Bone Regeneration. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31527-31541.	8.0	9
3	Construction of Antimicrobial Material-Loaded Porous Tricalcium Phosphate Beads for Treatment of Bone Infections. ACS Applied Bio Materials, 2021, 4, 6280-6293.	4.6	3
4	Isotropic freeze casting of through-porous hydroxyapatite ceramics. Journal of Advanced Ceramics, 2019, 8, 256-264.	17.4	21
5	Combination of the Silver–Ethylene Interaction and 3D Printing To Develop Antibacterial Superporous Hydrogels for Wound Management. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33734-33747.	8.0	83
6	Gelcasting of through-pore hydroxyapatite ceramics. Journal of the European Ceramic Society, 2019, 39, 547-553.	5.7	6
7	Epitaxial growth of apatite nanorods on the surfaces of porous calcium phosphate ceramics. Ceramics International, 2018, 44, 11983-11992.	4.8	6
8	Biological effects of apatite nanoparticle-constructed ceramic surfaces in regulating behaviours of mesenchymal stem cells. Journal of Materials Chemistry B, 2018, 6, 5621-5632.	5.8	7
9	Preparation and biological effects of apatite nanosheet-constructed porous ceramics. Journal of Materials Chemistry B, 2017, 5, 807-816.	5.8	15
10	Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds. Materials and Design, 2016, 109, 415-424.	7.0	91
11	Osteogenic Commitment of Mesenchymal Stem Cells in Apatite Nanorod-Aligned Ceramics. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21886-21893.	8.0	25
12	Rapid osteogenic differentiation of mesenchymal stem cells on hydroxyapatite nanocrystal clusters-oriented nanotopography. RSC Advances, 2014, 4, 58019-58026.	3.6	3
13	Applications of nanostructured calcium phosphate in tissue engineering. Biomaterials Science, 2013, 1, 1012.	5.4	50
14	Reverse-biomineralization assembly of acid-sensitive biomimetic fibers for hard tissue engineering and drug delivery. Journal of Materials Chemistry B, 2013, 1, 3694.	5.8	13
15	Hydroxyapatite nanoparticleâ€strengthened bioactive glass nanofibres. Micro and Nano Letters, 2013, 8, 470-472.	1.3	2
16	Selective effects of hydroxyapatite nanoparticles on osteosarcoma cells and osteoblasts. Journal of Materials Science: Materials in Medicine, 2012, 23, 2245-2251.	3.6	59
17	APPLICATIONS OF CALCIUM PHOSPHATE NANOPARTICLES IN POROUS HARD TISSUE ENGINEERING SCAFFOLDS. Nano, 2012, 07, 1230004.	1.0	27
18	A review of protein adsorption on bioceramics. Interface Focus, 2012, 2, 259-277.	3.0	260

#	Article	IF	CITATION
19	A hierarchically graded bioactive scaffold bonded to titanium substrates for attachment to bone. Biomaterials, 2011, 32, 7333-7346.	11.4	48
20	Fabrication and Drug Delivery of Ultrathin Mesoporous Bioactive Glass Hollow Fibers. Advanced Functional Materials, 2010, 20, 1503-1510.	14.9	124
21	Preparation, Bioactivity, and Drug Release of Hierarchical Nanoporous Bioactive Glass Ultrathin Fibers. Advanced Materials, 2010, 22, 754-758.	21.0	113
22	Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics. Materials Science and Engineering Reports, 2010, 70, 225-242.	31.8	162
23	Addition of PEG and the effect on carbonated nano-hydroxyapatite synthesis. , 2010, , .		0
24	Synthesis and Protein Adsorption of Hierarchical Nanoporous Ultrathin Fibers. Journal of Physical Chemistry B, 2009, 113, 5837-5842.	2.6	36