Katharina E Fabricius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1279053/publications.pdf

Version: 2024-02-01

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Effects of variable daily light integrals and elevated CO2 on the adult and juvenile performance of two Acropora corals. Marine Biology, 2022, 169 , 1 .	0.7	4
2	Expanding ocean food production under climate change. Nature, 2022, 605, 490-496.	13.7	20
3	Reef state and performance as indicators of cumulative impacts on coral reefs. Ecological Indicators, 2021, 123, 107335.	2.6	16
4	A benthic light index of water quality in the Great Barrier Reef, Australia. Marine Pollution Bulletin, 2021, 169, 112539.	2.3	3
5	Optimizing coral reef recovery with context-specific management actions at prioritized reefs. Journal of Environmental Management, 2021, 295, 113209.	3.8	12
6	Coral micro- and macro-morphological skeletal properties in response to life-long acclimatization at CO2 vents in Papua New Guinea. Scientific Reports, 2021, 11, 19927.	1.6	10
7	Knowledge Gaps in the Biology, Ecology, and Management of the Pacific Crown-of-Thorns Sea Star <i>Acanthaster</i> sp. on Australia's Great Barrier Reef. Biological Bulletin, 2021, 241, 330-346.	0.7	25
8	Effects of low pH on the coral reef cryptic invertebrate communities near CO2 vents in Papua New Guinea. PLoS ONE, 2021, 16, e0258725.	1.1	6
9	Diel pCO2 variation among coral reefs and microhabitats at Lizard Island, Great Barrier Reef. Coral Reefs, 2020, 39, 1391-1406.	0.9	17
10	Progressive seawater acidification on the Great Barrier Reef continental shelf. Scientific Reports, 2020, 10, 18602.	1.6	11
11	Shifts in coralline algae, macroalgae, and coral juveniles in the Great Barrier Reef associated with presentâ€day ocean acidification. Global Change Biology, 2020, 26, 2149-2160.	4.2	18
12	Relative roles of biological and physical processes influencing coral recruitment during the lag phase of reef community recovery. Scientific Reports, 2020, 10, 2471.	1.6	23
13	Multispecific coral spawning events and extended breeding periods on an equatorial reef. Coral Reefs, 2020, 39, 1107-1123.	0.9	10
14	Model for deriving benthic irradiance in the Great Barrier Reef from MODIS satellite imagery: erratum. Optics Express, 2020, 28, 27473.	1.7	1
15	Temporal and spatial variation in fatty acid composition in Acropora tenuis corals along water quality gradients on the Great Barrier Reef, Australia. Coral Reefs, 2019, 38, 215-228.	0.9	25
16	Contrasting responses of the coral Acropora tenuis to moderate and strong light limitation in coastal waters. Marine Environmental Research, 2019, 147, 80-89.	1.1	7
17	The Great Barrier Reef: A source of CO2 to the atmosphere. Marine Chemistry, 2019, 210, 24-33.	0.9	24
18	Drivers of recovery and reassembly of coral reef communities. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182908.	1.2	70

#	Article	IF	CITATIONS
19	Neustonic copepods (Labidocera spp.) discovered living residentially in coral reefs. Marine Biodiversity, 2019, 49, 345-355.	0.3	1
20	Model for deriving benthic irradiance in the Great Barrier Reef from MODIS satellite imagery. Optics Express, 2019, 27, A1350.	1.7	11
21	Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review. Global Change Biology, 2018, 24, 2239-2261.	4.2	285
22	Support for improved quality control but misplaced criticism of GBR science. Reply to viewpoint "The need for a formalised system of Quality Control for environmental policy-science―by P. Larcombe and P. Ridd (Marine Pollution Bulletin 126: 449–461, 2018). Marine Pollution Bulletin, 2018, 129, 357-363.	2.3	3
23	Elevated CO2 Has Little Influence on the Bacterial Communities Associated With the pH-Tolerant Coral, Massive Porites spp Frontiers in Microbiology, 2018, 9, 2621.	1.5	26
24	Effects of variability in daily light integrals on the photophysiology of the corals Pachyseris speciosa and Acropora millepora. PLoS ONE, 2018, 13, e0203882.	1.1	24
25	Rehabilitation of coral reefs through removal of macroalgae: state of knowledge and considerations for management and implementation. Restoration Ecology, 2018, 26, 827-838.	1.4	35
26	Ocean acidification alters early successional coral reef communities and their rates of community metabolism. PLoS ONE, 2018, 13, e0197130.	1.1	13
27	Cumulative effects of suspended sediments, organic nutrients and temperature stress on early life history stages of the coral Acropora tenuis. Scientific Reports, 2017, 7, 44101.	1.6	52
28	Variation in the health and biochemical condition of the coral Acropora tenuis along two water quality gradients on the Great Barrier Reef, Australia. Marine Pollution Bulletin, 2017, 119, 106-119.	2.3	26
29	Tropical CO2 seeps reveal the impact of ocean acidification on coral reef invertebrate recruitment. Marine Pollution Bulletin, 2017, 124, 607-613.	2.3	19
30	Low recruitment due to altered settlement substrata as primary constraint for coral communities under ocean acidification. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171536.	1.2	45
31	Effects of suspended sediments and nutrient enrichment on juvenile corals. Marine Pollution Bulletin, 2017, 125, 166-175.	2.3	34
32	A diver-operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats. Scientific Reports, 2017, 7, 7122.	1.6	56
33	Setting ecologically relevant targets for river pollutant loads to meet marine water quality requirements for the Great Barrier Reef, Australia: A preliminary methodology and analysis. Ocean and Coastal Management, 2017, 143, 136-147.	2.0	47
34	Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nature Climate Change, 2017, 7, 81-85.	8.1	164
35	Minor impacts of reduced pH on bacterial biofilms on settlement tiles along natural pH gradients at two CO2 seeps in Papua New Guinea. ICES Journal of Marine Science, 2017, 74, 978-987.	1.2	11
36	Quantifying pCO2 in biological ocean acidification experiments: A comparison of four methods. PLoS ONE, 2017, 12, e0185469.	1.1	15

3

#	Article	IF	Citations
37	Pontellid copepods, Labidocera spp., affected by ocean acidification: A field study at natural CO2 seeps. PLoS ONE, 2017, 12, e0175663.	1.1	7
38	Cumulative Effects of Nutrient Enrichment and Elevated Temperature Compromise the Early Life History Stages of the Coral Acropora tenuis. PLoS ONE, 2016, 11, e0161616.	1.1	52
39	⟨i>Echinometra sea urchins acclimatized to elevated ⟨scp⟩⟨i>p⟨ i>CO⟨ scp⟩⟨sub⟩2⟨ sub⟩ at volcanic vents outperform those under presentâ€day ⟨scp⟩⟨i>p⟨ i>CO⟨ scp⟩⟨sub⟩2⟨ sub⟩ conditions. Global Change Biology, 2016, 22, 2451-2461.	4.2	47
40	Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study. Journal of Environmental Management, 2016, 182, 641-650.	3.8	22
41	Enhanced macroboring and depressed calcification drive net dissolution at high-CO ₂ coral reefs. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161742.	1.2	65
42	Ocean acidification reduces demersal zooplankton that reside in tropical coral reefs. Nature Climate Change, 2016, 6, 1124-1129.	8.1	36
43	Reduced heterotrophy in the stony coral Galaxea fascicularis after life-long exposure to elevated carbon dioxide. Scientific Reports, 2016, 6, 27019.	1.6	13
44	Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002–2013. Estuarine, Coastal and Shelf Science, 2016, 173, A1-A15.	0.9	92
45	Ocean acidification affects productivity but not the severity of thermal bleaching in some tropical corals. ICES Journal of Marine Science, 2016, 73, 715-726.	1.2	50
46	Effects of sedimentation, eutrophication, and chemical pollution on coral reef fishes., 2015, , 145-153.		38
47	Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges. ISME Journal, 2015, 9, 894-908.	4.4	268
48	Gains and losses of coral skeletal porosity changes with ocean acidification acclimation. Nature Communications, 2015, 6, 7785.	5.8	106
49	Changes in microbial communities in coastal sediments along natural <scp><scp>CO₂</scp></scp> gradients at a volcanic vent in <scp>P</scp> apua <scp>N</scp> ew <scp>G</scp> uinea. Environmental Microbiology, 2015, 17, 3678-3691.	1.8	64
50	Ocean acidification through the lens of ecological theory. Ecology, 2015, 96, 3-15.	1.5	237
51	Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132479.	1.2	178
52	Biomineralization control related to population density under ocean acidification. Nature Climate Change, 2014, 4, 593-597.	8.1	68
53	Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nature Climate Change, 2014, 4, 487-492.	8.1	152
54	The effects of river run-off on water clarity across the central Great Barrier Reef. Marine Pollution Bulletin, 2014, 84, 191-200.	2.3	135

#	Article	IF	CITATIONS
55	Intra-annual variation in turbidity in response to terrestrial runoff on near-shore coral reefs of the Great Barrier Reef. Estuarine, Coastal and Shelf Science, 2013, 116, 57-65.	0.9	93
56	High risk of extinction of benthic foraminifera in this century due to ocean acidification. Scientific Reports, $2013, 3, .$	1.6	87
57	Future seagrass beds: Can increased productivity lead to increased carbon storage?. Marine Pollution Bulletin, 2013, 73, 463-469.	2.3	103
58	Yes â€" Coral calcification rates have decreased in the last twenty-five years!. Marine Geology, 2013, 346, 400-402.	0.9	26
59	The other ocean acidification problem: CO ₂ as a resource among competitors for ecosystem dominance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120442.	1.8	199
60	Does Trophic Status Enhance or Reduce the Thermal Tolerance of Scleractinian Corals? A Review, Experiment and Conceptual Framework. PLoS ONE, 2013, 8, e54399.	1.1	52
61	Symbiodinium Community Composition in Scleractinian Corals Is Not Affected by Life-Long Exposure to Elevated Carbon Dioxide. PLoS ONE, 2013, 8, e63985.	1.1	29
62	The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17995-17999.	3.3	1,411
63	Mechanisms of damage to corals exposed to sedimentation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1558-67.	3.3	184
64	Pigmentation of massive corals as a simple bioindicator for marine water quality. Marine Pollution Bulletin, 2012, 65, 333-341.	2.3	16
65	A bioindicator system for water quality on inshore coral reefs of the Great Barrier Reef. Marine Pollution Bulletin, 2012, 65, 320-332.	2.3	97
66	Productivity gains do not compensate for reduced calcification under nearâ€future ocean acidification in the photosynthetic benthic foraminifer species <i>Marginopora vertebralis</i> . Global Change Biology, 2012, 18, 2781-2791.	4.2	62
67	Temperate and tropical brown macroalgae thrive, despite decalcification, along natural <scp>CO</scp> ₂ gradients. Global Change Biology, 2012, 18, 2792-2803.	4.2	123
68	Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs, 2012, 31, 179-189.	0.9	86
69	The O2, pH and Ca2+ Microenvironment of Benthic Foraminifera in a High CO2 World. PLoS ONE, 2012, 7, e50010.	1.1	49
70	Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change, 2011, 1, 165-169.	8.1	856
71	The economic value of ecosystem services in the Great Barrier Reef: our state of knowledge. Annals of the New York Academy of Sciences, 2011, 1219, 113-133.	1.8	75
72	Future makers or future takers? A scenario analysis of climate change and the Great Barrier Reef. Global Environmental Change, 2011, 21, 876-893.	3.6	102

#	Article	IF	CITATIONS
73	Effects of Land-Use Change on Characteristics and Dynamics of Watershed Discharges in Babeldaob, Palau, Micronesia. Journal of Marine Biology, 2011, 2011, 1-17.	1.0	26
74	Evidence that water quality is an important driver of reef biota is not refuted: response to Ridd et al., 2011, 21, 3335-3336.		2
75	River discharge reduces reef coral diversity in Palau. Marine Pollution Bulletin, 2011, 62, 824-831.	2.3	58
76	Relationship of internal macrobioeroder densities in living massive Porites to turbidity and chlorophyll on the Australian Great Barrier Reef. Coral Reefs, 2011, 30, 97-107.	0.9	34
77	Factors Determining the Resilience of Coral Reefs to Eutrophication: A Review and Conceptual Model. , 2011, , 493-505.		83
78	Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation. Coral Reefs, 2010, 29, 593-605.	0.9	279
79	Monitoring pesticides in the Great Barrier Reef. Marine Pollution Bulletin, 2010, 60, 113-122.	2.3	134
80	Importance of wave-induced bed liquefaction in the fine sediment budget of Cleveland Bay, Great Barrier Reef. Estuarine, Coastal and Shelf Science, 2010, 89, 154-162.	0.9	100
81	Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecological Applications, 2010, 20, 840-850.	1.8	359
82	On Some Octocorallia (Alcyonacea) from Hong Kong, with Description of a New Species, <i>Paraminabea rubeusa </i> . Pacific Science, 2010, 64, 285-296.	0.2	3
83	Chemical and Physical Environmental Conditions Underneath Mat- and Canopy-Forming Macroalgae, and Their Effects on Understorey Corals. PLoS ONE, 2010, 5, e12685.	1.1	41
84	Bioindicators of changes in water quality on coral reefs: review and recommendations for monitoring programmes. Coral Reefs, 2009, 28, 589-606.	0.9	153
85	Predicting water toxicity: Pairing passive sampling with bioassays on the Great Barrier Reef. Aquatic Toxicology, 2009, 95, 108-116.	1.9	46
86	Declining Coral Calcification on the Great Barrier Reef. Science, 2009, 323, 116-119.	6.0	567
87	Symbiont specificity and bleaching susceptibility among soft corals in the 1998 Great Barrier Reef mass coral bleaching event. Marine Biology, 2008, 154, 795-804.	0.7	50
88	Theme section on "Ocean Acidification and Coral Reefs― Coral Reefs, 2008, 27, 455-457.	0.9	7
89	Effects of suspended sediments, dissolved inorganic nutrients and salinity on fertilisation and embryo development in the coral Acropora millepora (Ehrenberg, 1834). Coral Reefs, 2008, 27, 837-850.	0.9	86
90	Declining coral calcification in massive <i>Porites</i> in two nearshore regions of the northern Great Barrier Reef. Global Change Biology, 2008, 14, 529-538.	4.2	222

#	Article	IF	CITATIONS
91	Wet season fine sediment dynamics on the inner shelf of the Great Barrier Reef. Estuarine, Coastal and Shelf Science, 2008, 77, 755-762.	0.9	67
92	PHOTOSYNTHETIC SYMBIONTS AND ENERGY SUPPLY DETERMINE OCTOCORAL BIODIVERSITY IN CORAL REEFS. Ecology, 2008, 89, 3163-3173.	1.5	59
93	Gradients in coral reef communities exposed to muddy river discharge in Pohnpei, Micronesia. Estuarine, Coastal and Shelf Science, 2008, 76, 14-20.	0.9	45
94	Temporal dynamics in coral bioindicators for water quality on coastal coral reefs of the Great Barrier Reef. Marine and Freshwater Research, 2008, 59, 703.	0.7	47
95	Disturbance gradients on inshore and offshore coral reefs caused by a severe tropical cyclone. Limnology and Oceanography, 2008, 53, 690-704.	1.6	149
96	In Situ Applications of a New Diver-Operated Motorized Microsensor Profiler. Environmental Science & E	4.6	67
97	Gradients in water column nutrients, sediment parameters, irradiance and coral reef development in the Whitsunday Region, central Great Barrier Reef. Estuarine, Coastal and Shelf Science, 2007, 74, 458-470.	0.9	102
98	Selective mortality in coastal reef organisms from an acute sedimentation event. Coral Reefs, 2007, 26, 69-69.	0.9	25
99	Effects of irradiance, flow, and colony pigmentation on the temperature microenvironment around corals: Implications for coral bleaching?. Limnology and Oceanography, 2006, 51, 30-37.	1.6	76
100	Species richness and community structure of reef-building corals on the nearshore Great Barrier Reef. Coral Reefs, 2006, 25, 329-340.	0.9	134
101	Changes in octocoral communities and benthic cover along a water quality gradient in the reefs of Hong Kong. Marine Pollution Bulletin, 2006, 52, 22-33.	2.3	63
102	Sedimentation stress in a scleractinian coral exposed to terrestrial and marine sediments with contrasting physical, organic and geochemical properties. Journal of Experimental Marine Biology and Ecology, 2006, 336, 18-32.	0.7	167
103	Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Molecular Ecology, 2005, 14, 2403-2417.	2.0	168
104	Fine sediment budget on an inner-shelf coral-fringed island, Great Barrier Reef of Australia. Estuarine, Coastal and Shelf Science, 2005, 65, 153-158.	0.9	85
105	Are increased nutrient inputs responsible for more outbreaks of crown-of-thorns starfish? An appraisal of the evidence. Marine Pollution Bulletin, 2005, 51, 266-278.	2.3	246
106	Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Marine Pollution Bulletin, 2005, 51, 384-398.	2.3	380
107	Synergistic effects of diuron and sedimentation on photosynthesis and survival of crustose coralline algae. Marine Pollution Bulletin, 2005, 51, 415-427.	2.3	85
108	Effects of the herbicide diuron on the early life history stages of coral. Marine Pollution Bulletin, 2005, 51, 370-383.	2.3	150

#	Article	IF	Citations
109	Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Pollution Bulletin, 2005, 50, 125-146.	2.3	1,736
110	RECOGNITION AND SELECTION OF SETTLEMENT SUBSTRATA DETERMINE POST-SETTLEMENT SURVIVAL IN CORALS. Ecology, 2004, 85, 3428-3437.	1.5	404
111	Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Molecular Ecology, 2004, 13, 2445-2458.	2.0	221
112	Demographic aspects of the soft coral Sinularia flexibilis leading to local dominance on coral reefs. Hydrobiologia, 2004, 530-531, 433-441.	1.0	13
113	Scleractinian walls of mouths: Predation on coral larvae by corals. Coral Reefs, 2004, 23, 245.	0.9	60
114	IDENTIFYING ECOLOGICAL CHANGE AND ITS CAUSES: A CASE STUDY ON CORAL REEFS. , 2004, 14, 1448-1465.		127
115	Skeletal isotope microprofiles of growth perturbations in Porites corals during the 1997?1998 mass bleaching event. Coral Reefs, 2003, 22, 357-369.	0.9	119
116	Effects of transparent exopolymer particles and muddy terrigenous sediments on the survival of hard coral recruits. Estuarine, Coastal and Shelf Science, 2003, 57, 613-621.	0.9	114
117	Photophysiological stress in scleractinian corals in response to short-term sedimentation. Journal of Experimental Marine Biology and Ecology, 2003, 287, 57-78.	0.7	175
118	Genetic differentiation among populations of the brooding soft coral Clavularia koellikeri on the Great Barrier Reef. Coral Reefs, 2002, 21, 233-241.	0.9	18
119	Genetic differentiation among populations of a broadcast spawning soft coral, Sinularia flexibilis, on the Great Barrier Reef. Marine Biology, 2001, 138, 517-525.	0.7	28
120	Environmental factors associated with the spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs, 2001, 19, 303-309.	0.9	184
121	Biodiversity on the Great Barrier Reef. , 2000, , 127-144.		3
122	Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. Journal of Experimental Marine Biology and Ecology, 2000, 252, 221-253.	0.7	540
123	Rapid Smothering of Coral Reef Organisms by Muddy Marine Snow. Estuarine, Coastal and Shelf Science, 2000, 50, 115-120.	0.9	155
124	CLASSIFICATION AND REGRESSION TREES: A POWERFUL YET SIMPLE TECHNIQUE FOR ECOLOGICAL DATA ANALYSIS. Ecology, 2000, 81, 3178-3192.	1.5	2,501
125	CLASSIFICATION AND REGRESSION TREES: A POWERFUL YET SIMPLE TECHNIQUE FOR ECOLOGICAL DATA ANALYSIS. , 2000, 81, 3178.		78
126	Depletion of suspended particulate matter over coastal reef communities dominated by zooxanthellate soft corals. Marine Ecology - Progress Series, 2000, 196, 157-167.	0.9	70

#	Article	IF	CITATIONS
127	Tissue loss and mortality in soft corals following mass-bleaching. Coral Reefs, 1999, 18, 54-54.	0.9	23
128	In situ depletion of phytoplankton by an azooxanthellate soft coral. Limnology and Oceanography, 1998, 43, 354-356.	1.6	38
129	Phytoplankton distribution and grazing near coral reefs. Limnology and Oceanography, 1998, 43, 551-563.	1.6	139
130	Soft coral abundance on the central Great Barrier Reef: effects of Acanthaster planci, space availability, and aspects of the physical environment. Coral Reefs, 1997, 16, 159-167.	0.9	53
131	Herbivory in Soft Corals: Correction. Science, 1996, 273, 295-296.	6.0	2
132	Flowâ€dependent herbivory and growth in zooxanthellaeâ€free soft corals. Limnology and Oceanography, 1995, 40, 1290-1301.	1.6	133
133	Herbivory in Asymbiotic Soft Corals. Science, 1995, 268, 90-92.	6.0	85
134	Widespread mixotrophy in reef-inhabiting soft corals: the influence of depth, and colony expansion and contraction on photosynthesis. Marine Ecology - Progress Series, 1995, 125, 195-204.	0.9	101
135	Slow population turnover in the soft coral genera Sinularia and Sarcophyton on mid- and outer-shelf reefs of the Great Barrier Reef. Marine Ecology - Progress Series, 1995, 126, 145-152.	0.9	59
136	Spatial patterns in shallow-water crinoid communities on the central Great Barrier Reef. Marine and Freshwater Research, 1994, 45, 1225.	0.7	9
137	Re-assessment of ossicle frequency patterns in sediment cores: rate of sedimentation related to Acanthaster planci. Coral Reefs, 1992, 11, 109-114.	0.9	14