Jörg J Goronzy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1278477/publications.pdf

Version: 2024-02-01

212 papers

25,855 citations

87 h-index

4146

7518

g-index

151

267 all docs

267 docs citations

times ranked

267

25674 citing authors

#	Article	lF	CITATIONS
1	Reduced chromatin accessibility to CD4 T cell super-enhancers encompassing susceptibility loci of rheumatoid arthritis. EBioMedicine, 2022, 76, 103825.	6.1	1
2	Age as a risk factor in vasculitis. Seminars in Immunopathology, 2022, 44, 281-301.	6.1	22
3	Regulatory T Cells in Autoimmune Vasculitis. Frontiers in Immunology, 2022, 13, 844300.	4.8	10
4	T-Cell Aging-Associated Phenotypes in Autoimmune Disease. Frontiers in Aging, 2022, 3, .	2.6	14
5	IL-4 prevents adenosine-mediated immunoregulation by inhibiting CD39 expression. JCI Insight, 2022, 7, .	5.0	3
6	The transcription factor RFX5 coordinates antigen-presenting function and resistance to nutrient stress in synovial macrophages. Nature Metabolism, 2022, 4, 759-774.	11.9	39
7	Hyperactivity of the CD155 immune checkpoint suppresses anti-viral immunity in patients with coronary artery disease., 2022, 1, 634-648.		5
8	T cell aging in hypertension. Cardiovascular Research, 2021, 117, 21-23.	3.8	1
9	The immunology of rheumatoid arthritis. Nature Immunology, 2021, 22, 10-18.	14.5	297
10	NOTCH-induced rerouting of endosomal trafficking disables regulatory T cells in vasculitis. Journal of Clinical Investigation, 2021, 131, .	8.2	34
11	Arachidonic acid-regulated calcium signaling in T cells from patients with rheumatoid arthritis promotes synovial inflammation. Nature Communications, 2021, 12, 907.	12.8	35
12	The GSK3 $\hat{1}^2$ - $\hat{1}^2$ -catenin-TCF1 pathway improves naive T cell activation in old adults by upregulating miR-181a. Npj Aging and Mechanisms of Disease, 2021, 7, 4.	4.5	8
13	Hallmarks of the aging Tâ€cell system. FEBS Journal, 2021, 288, 7123-7142.	4.7	70
14	Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy. Journal of the National Cancer Institute, 2021, 113, 1285-1298.	6.3	156
15	Metabolic Control of Autoimmunity and Tissue Inflammation in Rheumatoid Arthritis. Frontiers in Immunology, 2021, 12, 652771.	4.8	65
16	Association of Premature Immune Aging and Cytomegalovirus After Solid Organ Transplant. Frontiers in Immunology, 2021, 12, 661551.	4.8	13
17	Histone deficiency and accelerated replication stress in T cell aging. Journal of Clinical Investigation, 2021, 131, .	8.2	17
18	miR-181a-regulated pathways in T-cell differentiation and aging. Immunity and Ageing, 2021, 18, 28.	4.2	22

#	Article	IF	CITATIONS
19	Activation of mTORC1 at late endosomes misdirects T cell fate decision in older individuals. Science Immunology, 2021, 6, .	11.9	22
20	Structural constraints in T-cell repertoire selection predicted by machine learning. Genes and Immunity, 2021, 22, 203-204.	4.1	1
21	Understanding T cell aging to improve anti-viral immunity. Current Opinion in Virology, 2021, 51, 127-133.	5.4	9
22	Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nature Immunology, 2021, 22, 1551-1562.	14.5	47
23	The cell-surface 5′-nucleotidase CD73 defines a functional T memory cell subset that declines with age. Cell Reports, 2021, 37, 109981.	6.4	15
24	Lysosomes in T Cell Immunity and Aging. Frontiers in Aging, 2021, 2, .	2.6	6
25	Large and Medium-Vessel Vasculitides. , 2020, , 1313-1334.		0
26	Determinants governing T cell receptor $\hat{l}\pm\hat{l}^2$ -chain pairing in repertoire formation of identical twins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 532-540.	7.1	42
27	The metabolic signature of T cells in rheumatoid arthritis. Current Opinion in Rheumatology, 2020, 32, 159-167.	4.3	30
28	Cellular Signaling Pathways in Medium and Large Vessel Vasculitis. Frontiers in Immunology, 2020, 11, 587089.	4.8	40
29	Succinyl-CoA Ligase Deficiency in Pro-inflammatory and Tissue-Invasive T Cells. Cell Metabolism, 2020, 32, 967-980.e5.	16.2	51
30	Distinct Age-Related Epigenetic Signatures in CD4 and CD8 T Cells. Frontiers in Immunology, 2020, 11, 585168.	4.8	46
31	Pathogenesis of Giant Cell Arteritis and Takayasu Arteritis—Similarities and Differences. Current Rheumatology Reports, 2020, 22, 68.	4.7	56
32	The Transcription Factor TCF1 in T Cell Differentiation and Aging. International Journal of Molecular Sciences, 2020, 21, 6497.	4.1	49
33	FOXO1 deficiency impairs proteostasis in aged T cells. Science Advances, 2020, 6, eaba1808.	10.3	33
34	Influence of immune aging on vaccine responses. Journal of Allergy and Clinical Immunology, 2020, 145, 1309-1321.	2.9	187
35	Immunometabolism in the development of rheumatoid arthritis. Immunological Reviews, 2020, 294, 177-187.	6.0	90
36	A facile technology for the high-throughput sequencing of the paired VH:VL and TCRÎ ² :TCRα repertoires. Science Advances, 2020, 6, eaay9093.	10.3	18

#	Article	IF	Citations
37	Innate and Adaptive Immunity in Giant Cell Arteritis. Frontiers in Immunology, 2020, 11, 621098.	4.8	31
38	Immune cell repertoires in breast cancer patients after adjuvant chemotherapy. JCI Insight, 2020, 5, .	5.0	31
39	Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation. Journal of Clinical Investigation, 2020, 130, 3422-3436.	8.2	22
40	Metabolic Fitness of T Cells in Autoimmune Disease. Immunometabolism, 2020, 2, .	1.6	17
41	The DNA Repair Nuclease MRE11A Functions as a Mitochondrial Protector and Prevents T Cell Pyroptosis and Tissue Inflammation. Cell Metabolism, 2019, 30, 477-492.e6.	16.2	105
42	Metabolic reprogramming in memory CD4 T cell responses of old adults. Clinical Immunology, 2019, 207, 58-67.	3.2	29
43	Transcription factor networks in aged na \tilde{A} ve CD4 T cells bias lineage differentiation. Aging Cell, 2019, 18, e12957.	6.7	42
44	Neutrophil Extracellular Traps Induce Tissue-Invasive Monocytes in Granulomatosis With Polyangiitis. Frontiers in Immunology, 2019, 10, 2617.	4.8	28
45	N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nature Immunology, 2019, 20, 313-325.	14.5	97
46	Epigenetic signature of PD-1+ TCF1+ CD8 T cells that act as resource cells during chronic viral infection and respond to PD-1 blockade. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14113-14118.	7.1	157
47	Mechanisms underlying T cell ageing. Nature Reviews Immunology, 2019, 19, 573-583.	22.7	250
48	CD28 Signaling Controls MetabolicÂFitness of Pathogenic T Cells in Medium and LargeÂVesselÂVasculitis. Journal of the American College of Cardiology, 2019, 73, 1811-1823.	2.8	30
49	Cytokines, growth factors and proteases in medium and large vessel vasculitis. Clinical Immunology, 2019, 206, 33-41.	3.2	43
50	Defects in Antiviral T Cell Responses Inflicted by Aging-Associated miR-181a Deficiency. Cell Reports, 2019, 29, 2202-2216.e5.	6.4	30
51	Chronic inflammation in the etiology of disease across the life span. Nature Medicine, 2019, 25, 1822-1832.	30.7	2,195
52	Functional pathways regulated by microRNA networks in CD8 Tâ€cell aging. Aging Cell, 2019, 18, e12879.	6.7	40
53	Age, T Cell Homeostasis, and T Cell Diversity in Humans. , 2019, , 303-322.		1
54	The immunoinhibitory PD-1/PD-L1 pathway in inflammatory blood vessel disease. Journal of Leukocyte Biology, 2018, 103, 565-575.	3.3	65

#	Article	IF	Citations
55	Granulomatous Inflammation. , 2018, , 303-356.		O
56	Hypermetabolic macrophages in rheumatoid arthritis and coronary artery disease due to glycogen synthase kinase 3b inactivation. Annals of the Rheumatic Diseases, 2018, 77, 1053-1062.	0.9	80
57	Fighting against a protean enemy: immunosenescence, vaccines, and healthy aging. Npj Aging and Mechanisms of Disease, 2018, 4, 1.	4.5	80
58	Inhibition of JAK-STAT Signaling Suppresses Pathogenic Immune Responses in Medium and Large Vessel Vasculitis. Circulation, 2018, 137, 1934-1948.	1.6	161
59	Vaccination programs for older adults in an era of demographic change. European Geriatric Medicine, 2018, 9, 289-300.	2.8	43
60	Age, T Cell Homeostasis, and T Cell Diversity in Humans. , 2018, , 1-20.		0
61	Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radical Biology and Medicine, 2018, 125, 36-43.	2.9	50
62	DNA damage, metabolism and aging in pro-inflammatory T cells. Experimental Gerontology, 2018, 105, 118-127.	2.8	53
63	Activation of miR-21-Regulated Pathways in Immune Aging Selects against Signatures Characteristic of Memory T Cells. Cell Reports, 2018, 25, 2148-2162.e5.	6.4	80
64	T follicular helper cell development and functionality in immune ageing. Clinical Science, 2018, 132, 1925-1935.	4.3	31
65	Epigenetics of T cell aging. Journal of Leukocyte Biology, 2018, 104, 691-699.	3.3	46
66	MMP (Matrix Metalloprotease)-9–Producing Monocytes Enable T Cells to Invade the Vessel Wall and Cause Vasculitis. Circulation Research, 2018, 123, 700-715.	4.5	103
67	Regulation of miR-181a expression in T cell aging. Nature Communications, 2018, 9, 3060.	12.8	58
68	A Mitochondrial Checkpoint in Autoimmune Disease. Cell Metabolism, 2018, 28, 185-186.	16.2	8
69	Glucose metabolism controls disease-specific signatures of macrophage effector functions. JCI Insight, 2018, 3, .	5.0	60
70	Immunoinhibitory checkpoint deficiency in medium and large vessel vasculitis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E970-E979.	7.1	172
71	Lymphocytes T pro-inflammatoires et anti-inflammatoires dans l'artérite à cellules géantes. Revue Du Rhumatisme (Edition Francaise), 2017, 84, 94-100.	0.0	2
72	Clinical and pathological evolution of giant cell arteritis: a prospective study of follow-up temporal artery biopsies in 40 treated patients. Modern Pathology, 2017, 30, 788-796.	5 . 5	148

#	Article	lF	CITATIONS
73	Epigenomics of human CD8 T cell differentiation and aging. Science Immunology, 2017, 2, .	11.9	181
74	Metabolic signatures of T-cells and macrophages in rheumatoid arthritis. Current Opinion in Immunology, 2017, 46, 112-120.	5 . 5	106
75	Response to Comment on "Diversification of the antigen-specific T cell receptor repertoire after varicella zoster vaccination― Science Translational Medicine, 2017, 9, .	12.4	O
76	Immune checkpoint dysfunction in large and medium vessel vasculitis. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H1052-H1059.	3.2	85
77	Immunometabolism in early and late stages of rheumatoid arthritis. Nature Reviews Rheumatology, 2017, 13, 291-301.	8.0	195
78	Successful and Maladaptive T Cell Aging. Immunity, 2017, 46, 364-378.	14.3	250
79	The microvascular niche instructs T cells in large vessel vasculitis via the VEGF-Jagged1-Notch pathway. Science Translational Medicine, 2017, 9, .	12.4	93
80	Metabolic control of the scaffold protein TKS5 in tissue-invasive, proinflammatory T cells. Nature Immunology, 2017, 18, 1025-1034.	14.5	103
81	Origin and differentiation of human memory CD8 T cells after vaccination. Nature, 2017, 552, 362-367.	27.8	412
82	Lymphocyte generation and population homeostasis throughout life. Seminars in Hematology, 2017, 54, 33-38.	3.4	63
83	Pro-inflammatory and anti-inflammatory T cells in giant cell arteritis. Joint Bone Spine, 2017, 84, 421-426.	1.6	39
84	Immune Checkpoint Function of CD85j in CD8 T Cell Differentiation and Aging. Frontiers in Immunology, 2017, 8, 692.	4.8	31
85	Pyruvate controls the checkpoint inhibitor PD-L1 and suppresses T cell immunity. Journal of Clinical Investigation, 2017, 127, 2725-2738.	8.2	75
86	Aging of the Immune System. Mechanisms and Therapeutic Targets. Annals of the American Thoracic Society, 2016, 13, S422-S428.	3.2	253
87	Deficient Activity of the Nuclease MRE11A Induces T Cell Aging and Promotes Arthritogenic Effector Functions in Patients with Rheumatoid Arthritis. Immunity, 2016, 45, 903-916.	14.3	88
88	Diversification of the antigen-specific T cell receptor repertoire after varicella zoster vaccination. Science Translational Medicine, 2016, 8, 332ra46.	12.4	64
89	Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Science Translational Medicine, 2016, 8, 331ra38.	12.4	201
90	Giant Cell Arteritis: From Pathogenesis to Therapeutic Management. Current Treatment Options in Rheumatology, 2016, 2, 126-137.	1.4	42

#	Article	IF	Citations
91	Expression of CD39 on Activated T Cells Impairs their Survival in Older Individuals. Cell Reports, 2016, 14, 1218-1231.	6.4	111
92	The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. Journal of Experimental Medicine, 2016, 213, 337-354.	8.5	403
93	The life cycle of a T cell after vaccination – where does immune ageing strike?. Clinical and Experimental Immunology, 2016, 187, 71-81.	2.6	39
94	NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs. Journal of Clinical Investigation, 2016, 126, 1953-1967.	8.2	107
95	Defective T Memory Cell Differentiation after Varicella Zoster Vaccination in Older Individuals. PLoS Pathogens, 2016, 12, e1005892.	4.7	61
96	High-throughput sequencing insights into T-cell receptor repertoire diversity in aging. Genome Medicine, 2015, 7, 117.	8.2	40
97	Naive T Cell Maintenance and Function in Human Aging. Journal of Immunology, 2015, 194, 4073-4080.	0.8	271
98	Autophagy in autoimmune disease. Journal of Molecular Medicine, 2015, 93, 707-717.	3.9	106
99	B-cell repertoire responses to varicella-zoster vaccination in human identical twins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 500-505.	7.1	112
100	T-cell metabolism in autoimmune disease. Arthritis Research and Therapy, 2015, 17, 29.	3.5	118
101	Age-Associated Failure To Adjust Type I IFN Receptor Signaling Thresholds after T Cell Activation. Journal of Immunology, 2015, 195, 865-874.	0.8	45
102	Large-Scale and Comprehensive Immune Profiling and Functional Analysis of Normal Human Aging. PLoS ONE, 2015, 10, e0133627.	2.5	90
103	Abstract 424: Hyper-Inflammatory Macrophages in Coronary Artery Disease and Rheumatoid Arthritis; A Signature of CCL18, Krüppel-like Factor 2 and 4 and Oxidative Stress Response Genes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0
104	The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy. Autophagy, 2014, 10, 382-383.	9.1	53
105	T Cellââ,¬â€œMacrophage Interactions and Granuloma Formation in Vasculitis. Frontiers in Immunology, 2014, 5, 432.	4.8	65
106	A population biological approach to understanding the maintenance and loss of the Tâ€eell repertoire during aging. Immunology, 2014, 142, 167-175.	4.4	30
107	Regulatory T Cells and the Immune Aging Process: A Mini-Review. Gerontology, 2014, 60, 130-137.	2.8	255
108	T-cell aging in rheumatoid arthritis. Current Opinion in Rheumatology, 2014, 26, 93-100.	4.3	123

#	Article	IF	Citations
109	Large and Medium Vessel Vasculitides. , 2014, , 1087-1103.		O
110	Diversity and clonal selection in the human T-cell repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13139-13144.	7.1	622
111	Giant-Cell Arteritis and Polymyalgia Rheumatica. New England Journal of Medicine, 2014, 371, 50-57.	27.0	335
112	Mechanisms shaping the naÃ⁻ve T cell repertoire in the elderly — Thymic involution or peripheral homeostatic proliferation?. Experimental Gerontology, 2014, 54, 71-74.	2.8	66
113	Targets of Immune Regeneration in Rheumatoid Arthritis. Mayo Clinic Proceedings, 2014, 89, 563-575.	3.0	14
114	Immune mechanisms in medium and large-vessel vasculitis. Nature Reviews Rheumatology, 2013, 9, 731-740.	8.0	347
115	Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. Journal of Experimental Medicine, 2013, 210, 2119-2134.	8.5	268
116	IL-7– and IL-15–Mediated TCR Sensitization Enables T Cell Responses to Self-Antigens. Journal of Immunology, 2013, 190, 1416-1423.	0.8	72
117	Understanding immunosenescence to improve responses to vaccines. Nature Immunology, 2013, 14, 428-436.	14.5	616
118	The Gracefully Aging Immune System. Science Translational Medicine, 2013, 5, 185ps8.	12.4	124
119	The Janus Head of T Cell Aging – Autoimmunity and Immunodeficiency. Frontiers in Immunology, 2013, 4, 131.	4.8	107
120	The Immunopathology of Giant Cell Arteritis. Journal of Neuro-Ophthalmology, 2012, 32, 259-265.	0.8	113
121	Peripheral selection rather than thymic involution explains sudden contraction in naive CD4 T-cell diversity with age. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21432-21437.	7.1	80
122	Signal inhibition by the dual-specific phosphatase 4 impairs T cell-dependent B-cell responses with age. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E879-88.	7.1	90
123	CD8+CD45RA+CCR7+FOXP3+ T Cells with Immunosuppressive Properties: A Novel Subset of Inducible Human Regulatory T Cells. Journal of Immunology, 2012, 189, 2118-2130.	0.8	65
124	Chronic inflammation and aging: DNA damage tips the balance. Current Opinion in Immunology, 2012, 24, 488-493.	5.5	90
125	Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nature Medicine, 2012, 18, 1518-1524.	30.7	321
126	Systems Biology of Vaccination in the Elderly. Current Topics in Microbiology and Immunology, 2012, 363, 117-142.	1.1	28

#	Article	IF	CITATIONS
127	Signaling pathways in aged T cells – A reflection of T cell differentiation, cell senescence and host environment. Seminars in Immunology, 2012, 24, 365-372.	5.6	112
128	Immune aging and autoimmunity. Cellular and Molecular Life Sciences, 2012, 69, 1615-1623.	5 . 4	212
129	Mechanisms of immunosenescence: lessons from models of accelerated immune aging. Annals of the New York Academy of Sciences, 2012, 1247, 69-82.	3.8	58
130	Giant cell arteritis: immune and vascular aging as disease risk factors. Arthritis Research and Therapy, 2011, 13, 231.	3 . 5	75
131	IFN- \hat{l}^3 and IL-17: the two faces of T-cell pathology in giant cell arteritis. Current Opinion in Rheumatology, 2011, 23, 43-49.	4.3	120
132	Regulation of T cell receptor signaling by activation-induced zinc influx. Journal of Experimental Medicine, 2011, 208, 775-785.	8.5	140
133	Blocking the NOTCH Pathway Inhibits Vascular Inflammation in Large-Vessel Vasculitis. Circulation, 2011, 123, 309-318.	1.6	130
134	Telomere dysfunction, autoimmunity and aging. , 2011, 2, 524-37.		57
135	Finding Balance: T cell Regulatory Receptor Expression during Aging. , 2011, 2, 398-413.		16
136	Promoter choice and translational repression determine cell type–specific cell surface density of the inhibitory receptor CD85j expressed on different hematopoietic lineages. Blood, 2010, 115, 3278-3286.	1.4	46
137	DNAâ€dependent protein kinase catalytic subunit mediates Tâ€cell loss in rheumatoid arthritis. EMBO Molecular Medicine, 2010, 2, 415-427.	6.9	57
138	Immune Aging and Rheumatoid Arthritis. Rheumatic Disease Clinics of North America, 2010, 36, 297-310.	1.9	71
139	Telomeres and Immunological Diseases of Aging. Gerontology, 2010, 56, 390-403.	2.8	89
140	Rejuvenating the immune system in rheumatoid arthritis. Nature Reviews Rheumatology, 2009, 5, 583-588.	8.0	93
141	Telomerase insufficiency in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4360-4365.	7.1	157
142	ERK-Dependent T Cell Receptor Threshold Calibration in Rheumatoid Arthritis. Journal of Immunology, 2009, 183, 8258-8267.	0.8	67
143	Toll-Like Receptors 4 and 5 Induce Distinct Types of Vasculitis. Circulation Research, 2009, 104, 488-495.	4.5	121
144	Deficiency of the DNA repair enzyme ATM in rheumatoid arthritis. Journal of Experimental Medicine, 2009, 206, 1435-1449.	8.5	137

#	Article	IF	Citations
145	CD28â^' T cells: their role in the age-associated decline of immune function. Trends in Immunology, 2009, 30, 306-312.	6.8	514
146	Developments in the scientific understanding of rheumatoid arthritis. Arthritis Research and Therapy, 2009, $11,249$.	3.5	96
147	Vascular damage in giant cell arteritis. Autoimmunity, 2009, 42, 596-604.	2.6	51
148	Epigenetic regulation of killer immunoglobulin–like receptor expression in T cells. Blood, 2009, 114, 3422-3430.	1.4	50
149	Defective proliferative capacity and accelerated telomeric loss of hematopoietic progenitor cells in rheumatoid arthritis. Arthritis and Rheumatism, 2008, 58, 990-1000.	6.7	91
150	T cell subset-specific susceptibility to aging. Clinical Immunology, 2008, 127, 107-118.	3.2	388
151	Age-Dependent Signature of Metallothionein Expression in Primary CD4 T Cell Responses Is Due to Sustained Zinc Signaling. Rejuvenation Research, 2008, 11, 1001-1011.	1.8	39
152	Vessel-Specific Toll-Like Receptor Profiles in Human Medium and Large Arteries. Circulation, 2008, 118, 1276-1284.	1.6	295
153	Vessel Wall–Embedded Dendritic Cells Induce T-Cell Autoreactivity and Initiate Vascular Inflammation. Circulation Research, 2008, 102, 546-553.	4.5	79
154	Aging and T-cell diversitya˜†. Experimental Gerontology, 2007, 42, 400-406.	2.8	228
155	Uncoupling of T-cell effector functions by inhibitory killer immunoglobulin–like receptors. Blood, 2006, 107, 4449-4457.	1.4	54
156	T-cell-targeted therapies in rheumatoid arthritis. Nature Clinical Practice Rheumatology, 2006, 2, 201-210.	3.2	59
157	Telomeres, immune aging and autoimmunity. Experimental Gerontology, 2006, 41, 246-251.	2.8	100
158	TRAIL-expressing T cells induce apoptosis of vascular smooth muscle cells in the atherosclerotic plaque. Journal of Experimental Medicine, 2006, 203, 239-250.	8.5	162
159	T Cell Recognition and Killing of Vascular Smooth Muscle Cells in Acute Coronary Syndrome. Circulation Research, 2006, 98, 1168-1176.	4.5	72
160	Large and Medium Vessel Vasculitides. , 2006, , 921-934.		0
161	T cell development and receptor diversity during aging. Current Opinion in Immunology, 2005, 17, 468-475.	5.5	256
162	Costimulatory Pathways in Rheumatoid Synovitis and T-Cell Senescence. Annals of the New York Academy of Sciences, 2005, 1062, 182-194.	3.8	46

#	Article	IF	Citations
163	Rheumatoid arthritis. Immunological Reviews, 2005, 204, 55-73.	6.0	187
164	T cell costimulation by fractalkine-expressing synoviocytes in rheumatoid arthritis. Arthritis and Rheumatism, 2005, 52, 1392-1401.	6.7	85
165	Modulation of CD28 expression with anti–tumor necrosis factor α therapy in rheumatoid arthritis. Arthritis and Rheumatism, 2005, 52, 2996-3003.	6.7	126
166	The Influence of Age on T Cell Generation and TCR Diversity. Journal of Immunology, 2005, 174, 7446-7452.	0.8	699
167	Stimulatory Killer Ig-Like Receptors Modulate T Cell Activation through DAP12-Dependent and DAP12-Independent Mechanisms. Journal of Immunology, 2004, 173, 3725-3731.	0.8	73
168	Activation of Arterial Wall Dendritic Cells and Breakdown of Self-tolerance in Giant Cell Arteritis. Journal of Experimental Medicine, 2004, 199, 173-183.	8.5	253
169	Prognostic markers of radiographic progression in early rheumatoid arthritis. Arthritis and Rheumatism, 2004, 50, 43-54.	6.7	160
170	The double life of NK receptors: stimulation or co-stimulation?. Trends in Immunology, 2004, 25, 25-32.	6.8	94
171	HLA-DRB1 haplotype did not affect the medium-term results of total knee arthroplasty in patients with rheumatoid arthritis. Modern Rheumatology, 2004, 14, 37-42.	1.8	0
172	T-cell regulation in rheumatoid arthritis. Current Opinion in Rheumatology, 2004, 16, 212-217.	4.3	89
173	Immunosenescence, autoimmunity, and rheumatoid arthritis. Experimental Gerontology, 2003, 38, 833-841.	2.8	152
174	Medium- and Large-Vessel Vasculitis. New England Journal of Medicine, 2003, 349, 160-169.	27.0	689
175	Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity - catalysts of autoimmunity and chronic inflammation. Arthritis Research, 2003, 5, 225.	2.0	168
176	Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13471-13476.	7.1	185
177	Selective Activation of the c-Jun NH2-terminal Protein Kinase Signaling Pathway by Stimulatory KIR in the Absence of KARAP/DAP12 in CD4+ T Cells. Journal of Experimental Medicine, 2003, 197, 437-449.	8.5	71
178	Homeostatic control of T-cell generation in neonates. Blood, 2003, 102, 1428-1434.	1.4	158
179	Formation of the Killer Ig-Like Receptor Repertoire on CD4+CD28null T Cells. Journal of Immunology, 2002, 168, 3839-3846.	0.8	98
180	CD8 T Cells Are Required for the Formation of Ectopic Germinal Centers in Rheumatoid Synovitis. Journal of Experimental Medicine, 2002, 195, 1325-1336.	8.5	163

#	Article	IF	CITATIONS
181	T-Cell–Mediated Lysis of Endothelial Cells in Acute Coronary Syndromes. Circulation, 2002, 105, 570-575.	1.6	332
182	Trapping of Misdirected Dendritic Cells in the Granulomatous Lesions of Giant Cell Arteritis. American Journal of Pathology, 2002, 161, 1815-1823.	3.8	150
183	Cytokines in giant-cell arteritis Cleveland Clinic Journal of Medicine, 2002, 69, SII91-SII91.	1.3	32
184	Thymic function and peripheral T-cell homeostasis in rheumatoid arthritis. Trends in Immunology, 2001, 22, 251-255.	6.8	126
185	CD4+,CD28? T cells in rheumatoid arthritis patients combine features of the innate and adaptive immune systems. Arthritis and Rheumatism, 2001, 44, 13-20.	6.7	208
186	Down-Regulation of CD28 Expression by TNF-α. Journal of Immunology, 2001, 167, 3231-3238.	0.8	238
187	Lymphoid Neogenesis in Rheumatoid Synovitis. Journal of Immunology, 2001, 167, 1072-1080.	0.8	596
188	Killer Cell Activating Receptors Function as Costimulatory Molecules on CD4+CD28null T Cells Clonally Expanded in Rheumatoid Arthritis. Journal of Immunology, 2000, 165, 1138-1145.	0.8	198
189	Perturbation of the T-Cell Repertoire in Patients With Unstable Angina. Circulation, 1999, 100, 2135-2139.	1.6	374
190	HLA Polymorphisms and T Cells in Rheumatoid Arthritis. International Reviews of Immunology, 1999, 18, 37-59.	3.3	24
191	Formation of New Vasa Vasorum in Vasculitis. American Journal of Pathology, 1999, 155, 765-774.	3.8	221
192	Functional properties of CD4+CD28â° T cells in the aging immune system. Mechanisms of Ageing and Development, 1998, 102, 131-147.	4.6	177
193	T Cell Receptor Repertoire in Rheumatoid Arthritis. International Reviews of Immunology, 1998, 17, 339-363.	3.3	53
194	Aging-related Deficiency of CD28 Expression in CD4+ T Cells Is Associated with the Loss of Gene-specific Nuclear Factor Binding Activity. Journal of Biological Chemistry, 1998, 273, 8119-8129.	3.4	169
195	Giant Cell Vasculitis Is a T Cell-Dependent Disease. Molecular Medicine, 1997, 3, 530-543.	4.4	125
196	The molecular basis of rheumatoid arthritis. Journal of Molecular Medicine, 1997, 75, 772-785.	3.9	47
197	Expansion of unusual CD4+ T cells in severe rheumatoid arthritis. Arthritis and Rheumatism, 1997, 40, 1106-1114.	6.7	273
198	Co-stimulatory pathways controlling activation and peripheral tolerance of human CD4+CD28â^' T cells. European Journal of Immunology, 1997, 27, 1082-1090.	2.9	95

#	Article	IF	Citations
199	The Repertoire of CD4+ CD28â° T Cells in Rheumatoid Arthritis. Molecular Medicine, 1996, 2, 608-618.	4.4	106
200	T-CELL DERIVED LYMPHOKINES AS REGULATORS OF CHRONIC INFLAMMATION. American Journal of Therapeutics, 1996, 3, 109-114.	0.9	2
201	Oligoclonal T cell proliferation in patients with rheumatoid arthritis and their unaffected siblings. Arthritis and Rheumatism, 1996, 39, 904-913.	6.7	129
202	Emergence of oligoclonal t cell populations following therapeutic t cell depletion in rheumatoid arthritis. Arthritis and Rheumatism, 1995, 38, 1242-1251.	6.7	96
203	Mechanisms underlying the formation of the T cell receptor repertoire in rheumatoid arthritis. Immunity, 1995, 2, 597-605.	14.3	66
204	The repertoire of rheumatoid factor–producing b cells in normal subjects and patients with rheumatoid arthritis. Arthritis and Rheumatism, 1993, 36, 1061-1069.	6.7	23
205	Correlation of interleukin-6 production and disease activity in polymyalgia rheumatica and giant cell arteritis. Arthritis and Rheumatism, 1993, 36, 1286-1294.	6.7	298
206	Selection of T cell receptor $\hat{V^2}$ elements by HLA-DR determinants predisposing to Rheumatoid Arthritis. Arthritis and Rheumatism, 1992, 35, 990-998.	6.7	18
207	Structural and Functional Characterization of Hla-Dr Molecules Circulating in the Serum. Autoimmunity, 1991, 8, 289-296.	2.6	36
208	Soluble Hia-Dr Molecules in Patients with Hla Class II Versus Class I Associated Disorders. Autoimmunity, 1991, 8, 281-287.	2.6	23
209	Single-channel and whole-cell recordings of mitogen-regulated inward currents in human cloned helper T lymphocytes. Nature, 1986, 323, 269-273.	27.8	156
210	Granulomatosis with Polyangiitis (Wegener's)., 0,, 238-251.		3
211	Innate Immunity in Atherosclerosis. , 0, , 136-146.		0
212	Vascular Development., 0,, 1-14.		0