Jörg J Goronzy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1278477/publications.pdf

Version: 2024-02-01

212 papers

25,855 citations

87 h-index

4146

7518

g-index

151

267 all docs

267 docs citations

times ranked

267

25674 citing authors

#	Article	IF	CITATIONS
1	Chronic inflammation in the etiology of disease across the life span. Nature Medicine, 2019, 25, 1822-1832.	30.7	2,195
2	The Influence of Age on T Cell Generation and TCR Diversity. Journal of Immunology, 2005, 174, 7446-7452.	0.8	699
3	Medium- and Large-Vessel Vasculitis. New England Journal of Medicine, 2003, 349, 160-169.	27.0	689
4	Diversity and clonal selection in the human T-cell repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13139-13144.	7.1	622
5	Understanding immunosenescence to improve responses to vaccines. Nature Immunology, 2013, 14, 428-436.	14.5	616
6	Lymphoid Neogenesis in Rheumatoid Synovitis. Journal of Immunology, 2001, 167, 1072-1080.	0.8	596
7	CD28â^' T cells: their role in the age-associated decline of immune function. Trends in Immunology, 2009, 30, 306-312.	6.8	514
8	Origin and differentiation of human memory CD8 T cells after vaccination. Nature, 2017, 552, 362-367.	27.8	412
9	The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. Journal of Experimental Medicine, 2016, 213, 337-354.	8.5	403
10	T cell subset-specific susceptibility to aging. Clinical Immunology, 2008, 127, 107-118.	3.2	388
11	Perturbation of the T-Cell Repertoire in Patients With Unstable Angina. Circulation, 1999, 100, 2135-2139.	1.6	374
12	Immune mechanisms in medium and large-vessel vasculitis. Nature Reviews Rheumatology, 2013, 9, 731-740.	8.0	347
13	Giant-Cell Arteritis and Polymyalgia Rheumatica. New England Journal of Medicine, 2014, 371, 50-57.	27.0	335
14	T-Cell–Mediated Lysis of Endothelial Cells in Acute Coronary Syndromes. Circulation, 2002, 105, 570-575.	1.6	332
15	Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nature Medicine, 2012, 18, 1518-1524.	30.7	321
16	Correlation of interleukin-6 production and disease activity in polymyalgia rheumatica and giant cell arteritis. Arthritis and Rheumatism, 1993, 36, 1286-1294.	6.7	298
17	The immunology of rheumatoid arthritis. Nature Immunology, 2021, 22, 10-18.	14.5	297
18	Vessel-Specific Toll-Like Receptor Profiles in Human Medium and Large Arteries. Circulation, 2008, 118, 1276-1284.	1.6	295

#	Article	IF	CITATIONS
19	Expansion of unusual CD4+ T cells in severe rheumatoid arthritis. Arthritis and Rheumatism, 1997, 40, 1106-1114.	6.7	273
20	Naive T Cell Maintenance and Function in Human Aging. Journal of Immunology, 2015, 194, 4073-4080.	0.8	271
21	Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. Journal of Experimental Medicine, 2013, 210, 2119-2134.	8.5	268
22	T cell development and receptor diversity during aging. Current Opinion in Immunology, 2005, 17, 468-475.	5.5	256
23	Regulatory T Cells and the Immune Aging Process: A Mini-Review. Gerontology, 2014, 60, 130-137.	2.8	255
24	Activation of Arterial Wall Dendritic Cells and Breakdown of Self-tolerance in Giant Cell Arteritis. Journal of Experimental Medicine, 2004, 199, 173-183.	8.5	253
25	Aging of the Immune System. Mechanisms and Therapeutic Targets. Annals of the American Thoracic Society, 2016, 13, S422-S428.	3.2	253
26	Successful and Maladaptive T Cell Aging. Immunity, 2017, 46, 364-378.	14.3	250
27	Mechanisms underlying T cell ageing. Nature Reviews Immunology, 2019, 19, 573-583.	22.7	250
28	Down-Regulation of CD28 Expression by TNF-α. Journal of Immunology, 2001, 167, 3231-3238.	0.8	238
29	Aging and T-cell diversityâ~†. Experimental Gerontology, 2007, 42, 400-406.	2.8	228
30	Formation of New Vasa Vasorum in Vasculitis. American Journal of Pathology, 1999, 155, 765-774.	3.8	221
31	Immune aging and autoimmunity. Cellular and Molecular Life Sciences, 2012, 69, 1615-1623.	5.4	212
32	CD4+,CD28? T cells in rheumatoid arthritis patients combine features of the innate and adaptive immune systems. Arthritis and Rheumatism, 2001, 44, 13-20.	6.7	208
33	Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Science Translational Medicine, 2016, 8, 331ra38.	12.4	201
34	Killer Cell Activating Receptors Function as Costimulatory Molecules on CD4+CD28null T Cells Clonally Expanded in Rheumatoid Arthritis. Journal of Immunology, 2000, 165, 1138-1145.	0.8	198
35	Immunometabolism in early and late stages of rheumatoid arthritis. Nature Reviews Rheumatology, 2017, 13, 291-301.	8.0	195
36	Rheumatoid arthritis. Immunological Reviews, 2005, 204, 55-73.	6.0	187

#	Article	IF	CITATIONS
37	Influence of immune aging on vaccine responses. Journal of Allergy and Clinical Immunology, 2020, 145, 1309-1321.	2.9	187
38	Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13471-13476.	7.1	185
39	Epigenomics of human CD8 T cell differentiation and aging. Science Immunology, 2017, 2, .	11.9	181
40	Functional properties of CD4+CD28â [^] T cells in the aging immune system. Mechanisms of Ageing and Development, 1998, 102, 131-147.	4.6	177
41	Immunoinhibitory checkpoint deficiency in medium and large vessel vasculitis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E970-E979.	7.1	172
42	Aging-related Deficiency of CD28 Expression in CD4+ T Cells Is Associated with the Loss of Gene-specific Nuclear Factor Binding Activity. Journal of Biological Chemistry, 1998, 273, 8119-8129.	3.4	169
43	Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity catalysts of autoimmunity and chronic inflammation. Arthritis Research, 2003, 5, 225.	2.0	168
44	CD8 T Cells Are Required for the Formation of Ectopic Germinal Centers in Rheumatoid Synovitis. Journal of Experimental Medicine, 2002, 195, 1325-1336.	8.5	163
45	TRAIL-expressing T cells induce apoptosis of vascular smooth muscle cells in the atherosclerotic plaque. Journal of Experimental Medicine, 2006, 203, 239-250.	8.5	162
46	Inhibition of JAK-STAT Signaling Suppresses Pathogenic Immune Responses in Medium and Large Vessel Vasculitis. Circulation, 2018, 137, 1934-1948.	1.6	161
47	Prognostic markers of radiographic progression in early rheumatoid arthritis. Arthritis and Rheumatism, 2004, 50, 43-54.	6.7	160
48	Homeostatic control of T-cell generation in neonates. Blood, 2003, 102, 1428-1434.	1.4	158
49	Telomerase insufficiency in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4360-4365.	7.1	157
50	Epigenetic signature of PD-1+ TCF1+ CD8 T cells that act as resource cells during chronic viral infection and respond to PD-1 blockade. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14113-14118.	7.1	157
51	Single-channel and whole-cell recordings of mitogen-regulated inward currents in human cloned helper T lymphocytes. Nature, 1986, 323, 269-273.	27.8	156
52	Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy. Journal of the National Cancer Institute, 2021, 113, 1285-1298.	6.3	156
53	Immunosenescence, autoimmunity, and rheumatoid arthritis. Experimental Gerontology, 2003, 38, 833-841.	2.8	152
54	Trapping of Misdirected Dendritic Cells in the Granulomatous Lesions of Giant Cell Arteritis. American Journal of Pathology, 2002, 161, 1815-1823.	3.8	150

#	Article	IF	CITATIONS
55	Clinical and pathological evolution of giant cell arteritis: a prospective study of follow-up temporal artery biopsies in 40 treated patients. Modern Pathology, 2017, 30, 788-796.	5.5	148
56	Regulation of T cell receptor signaling by activation-induced zinc influx. Journal of Experimental Medicine, 2011, 208, 775-785.	8.5	140
57	Deficiency of the DNA repair enzyme ATM in rheumatoid arthritis. Journal of Experimental Medicine, 2009, 206, 1435-1449.	8.5	137
58	Blocking the NOTCH Pathway Inhibits Vascular Inflammation in Large-Vessel Vasculitis. Circulation, 2011, 123, 309-318.	1.6	130
59	Oligoclonal T cell proliferation in patients with rheumatoid arthritis and their unaffected siblings. Arthritis and Rheumatism, 1996, 39, 904-913.	6.7	129
60	Thymic function and peripheral T-cell homeostasis in rheumatoid arthritis. Trends in Immunology, 2001, 22, 251-255.	6.8	126
61	Modulation of CD28 expression with anti–tumor necrosis factor α therapy in rheumatoid arthritis. Arthritis and Rheumatism, 2005, 52, 2996-3003.	6.7	126
62	Giant Cell Vasculitis Is a T Cell-Dependent Disease. Molecular Medicine, 1997, 3, 530-543.	4.4	125
63	The Gracefully Aging Immune System. Science Translational Medicine, 2013, 5, 185ps8.	12.4	124
64	T-cell aging in rheumatoid arthritis. Current Opinion in Rheumatology, 2014, 26, 93-100.	4.3	123
65	Toll-Like Receptors 4 and 5 Induce Distinct Types of Vasculitis. Circulation Research, 2009, 104, 488-495.	4.5	121
66	IFN- \hat{l}^3 and IL-17: the two faces of T-cell pathology in giant cell arteritis. Current Opinion in Rheumatology, 2011, 23, 43-49.	4.3	120
67	T-cell metabolism in autoimmune disease. Arthritis Research and Therapy, 2015, 17, 29.	3.5	118
68	The Immunopathology of Giant Cell Arteritis. Journal of Neuro-Ophthalmology, 2012, 32, 259-265.	0.8	113
69	Signaling pathways in aged T cells – A reflection of T cell differentiation, cell senescence and host environment. Seminars in Immunology, 2012, 24, 365-372.	5.6	112
70	B-cell repertoire responses to varicella-zoster vaccination in human identical twins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 500-505.	7.1	112
71	Expression of CD39 on Activated T Cells Impairs their Survival in Older Individuals. Cell Reports, 2016, 14, 1218-1231.	6.4	111
72	The Janus Head of T Cell Aging – Autoimmunity and Immunodeficiency. Frontiers in Immunology, 2013, 4, 131.	4.8	107

#	Article	lF	Citations
73	NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs. Journal of Clinical Investigation, 2016, 126, 1953-1967.	8.2	107
74	The Repertoire of CD4+ CD28â^' T Cells in Rheumatoid Arthritis. Molecular Medicine, 1996, 2, 608-618.	4.4	106
75	Autophagy in autoimmune disease. Journal of Molecular Medicine, 2015, 93, 707-717.	3.9	106
76	Metabolic signatures of T-cells and macrophages in rheumatoid arthritis. Current Opinion in Immunology, 2017, 46, 112-120.	5. 5	106
77	The DNA Repair Nuclease MRE11A Functions as a Mitochondrial Protector and Prevents T Cell Pyroptosis and Tissue Inflammation. Cell Metabolism, 2019, 30, 477-492.e6.	16.2	105
78	Metabolic control of the scaffold protein TKS5 in tissue-invasive, proinflammatory T cells. Nature Immunology, 2017, 18, 1025-1034.	14.5	103
79	MMP (Matrix Metalloprotease)-9–Producing Monocytes Enable T Cells to Invade the Vessel Wall and Cause Vasculitis. Circulation Research, 2018, 123, 700-715.	4.5	103
80	Telomeres, immune aging and autoimmunity. Experimental Gerontology, 2006, 41, 246-251.	2.8	100
81	Formation of the Killer Ig-Like Receptor Repertoire on CD4+CD28null T Cells. Journal of Immunology, 2002, 168, 3839-3846.	0.8	98
82	N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nature Immunology, 2019, 20, 313-325.	14.5	97
83	Emergence of oligoclonal t cell populations following therapeutic t cell depletion in rheumatoid arthritis. Arthritis and Rheumatism, 1995, 38, 1242-1251.	6.7	96
84	Developments in the scientific understanding of rheumatoid arthritis. Arthritis Research and Therapy, 2009, 11, 249.	3.5	96
85	Co-stimulatory pathways controlling activation and peripheral tolerance of human CD4+CD28â^ T cells. European Journal of Immunology, 1997, 27, 1082-1090.	2.9	95
86	The double life of NK receptors: stimulation or co-stimulation?. Trends in Immunology, 2004, 25, 25-32.	6.8	94
87	Rejuvenating the immune system in rheumatoid arthritis. Nature Reviews Rheumatology, 2009, 5, 583-588.	8.0	93
88	The microvascular niche instructs T cells in large vessel vasculitis via the VEGF-Jagged 1-Notch pathway. Science Translational Medicine, 2017, 9, .	12.4	93
89	Defective proliferative capacity and accelerated telomeric loss of hematopoietic progenitor cells in rheumatoid arthritis. Arthritis and Rheumatism, 2008, 58, 990-1000.	6.7	91
90	Signal inhibition by the dual-specific phosphatase 4 impairs T cell-dependent B-cell responses with age. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E879-88.	7.1	90

#	Article	IF	CITATIONS
91	Chronic inflammation and aging: DNA damage tips the balance. Current Opinion in Immunology, 2012, 24, 488-493.	5.5	90
92	Immunometabolism in the development of rheumatoid arthritis. Immunological Reviews, 2020, 294, 177-187.	6.0	90
93	Large-Scale and Comprehensive Immune Profiling and Functional Analysis of Normal Human Aging. PLoS ONE, 2015, 10, e0133627.	2.5	90
94	T-cell regulation in rheumatoid arthritis. Current Opinion in Rheumatology, 2004, 16, 212-217.	4.3	89
95	Telomeres and Immunological Diseases of Aging. Gerontology, 2010, 56, 390-403.	2.8	89
96	Deficient Activity of the Nuclease MRE11A Induces T Cell Aging and Promotes Arthritogenic Effector Functions in Patients with Rheumatoid Arthritis. Immunity, 2016, 45, 903-916.	14.3	88
97	T cell costimulation by fractalkine-expressing synoviocytes in rheumatoid arthritis. Arthritis and Rheumatism, 2005, 52, 1392-1401.	6.7	85
98	Immune checkpoint dysfunction in large and medium vessel vasculitis. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H1052-H1059.	3.2	85
99	Peripheral selection rather than thymic involution explains sudden contraction in naive CD4 T-cell diversity with age. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21432-21437.	7.1	80
100	Hypermetabolic macrophages in rheumatoid arthritis and coronary artery disease due to glycogen synthase kinase 3b inactivation. Annals of the Rheumatic Diseases, 2018, 77, 1053-1062.	0.9	80
101	Fighting against a protean enemy: immunosenescence, vaccines, and healthy aging. Npj Aging and Mechanisms of Disease, $2018,4,1.$	4.5	80
102	Activation of miR-21-Regulated Pathways in Immune Aging Selects against Signatures Characteristic of Memory T Cells. Cell Reports, 2018, 25, 2148-2162.e5.	6.4	80
103	Vessel Wall–Embedded Dendritic Cells Induce T-Cell Autoreactivity and Initiate Vascular Inflammation. Circulation Research, 2008, 102, 546-553.	4.5	79
104	Giant cell arteritis: immune and vascular aging as disease risk factors. Arthritis Research and Therapy, 2011, 13, 231.	3.5	75
105	Pyruvate controls the checkpoint inhibitor PD-L1 and suppresses T cell immunity. Journal of Clinical Investigation, 2017, 127, 2725-2738.	8.2	75
106	Stimulatory Killer Ig-Like Receptors Modulate T Cell Activation through DAP12-Dependent and DAP12-Independent Mechanisms. Journal of Immunology, 2004, 173, 3725-3731.	0.8	73
107	T Cell Recognition and Killing of Vascular Smooth Muscle Cells in Acute Coronary Syndrome. Circulation Research, 2006, 98, 1168-1176.	4.5	72
108	IL-7– and IL-15–Mediated TCR Sensitization Enables T Cell Responses to Self-Antigens. Journal of Immunology, 2013, 190, 1416-1423.	0.8	72

#	Article	IF	CITATIONS
109	Selective Activation of the c-Jun NH2-terminal Protein Kinase Signaling Pathway by Stimulatory KIR in the Absence of KARAP/DAP12 in CD4+ T Cells. Journal of Experimental Medicine, 2003, 197, 437-449.	8.5	71
110	Immune Aging and Rheumatoid Arthritis. Rheumatic Disease Clinics of North America, 2010, 36, 297-310.	1.9	71
111	Hallmarks of the aging Tâ€cell system. FEBS Journal, 2021, 288, 7123-7142.	4.7	70
112	ERK-Dependent T Cell Receptor Threshold Calibration in Rheumatoid Arthritis. Journal of Immunology, 2009, 183, 8258-8267.	0.8	67
113	Mechanisms underlying the formation of the T cell receptor repertoire in rheumatoid arthritis. Immunity, 1995, 2, 597-605.	14.3	66
114	Mechanisms shaping the $na\tilde{A}$ ve T cell repertoire in the elderly $\hat{a}\in$ " Thymic involution or peripheral homeostatic proliferation?. Experimental Gerontology, 2014, 54, 71-74.	2.8	66
115	CD8+CD45RA+CCR7+FOXP3+ T Cells with Immunosuppressive Properties: A Novel Subset of Inducible Human Regulatory T Cells. Journal of Immunology, 2012, 189, 2118-2130.	0.8	65
116	T Cellââ,¬â€œMacrophage Interactions and Granuloma Formation in Vasculitis. Frontiers in Immunology, 2014, 5, 432.	4.8	65
117	The immunoinhibitory PD-1/PD-L1 pathway in inflammatory blood vessel disease. Journal of Leukocyte Biology, 2018, 103, 565-575.	3.3	65
118	Metabolic Control of Autoimmunity and Tissue Inflammation in Rheumatoid Arthritis. Frontiers in Immunology, 2021, 12, 652771.	4.8	65
119	Diversification of the antigen-specific T cell receptor repertoire after varicella zoster vaccination. Science Translational Medicine, 2016, 8, 332ra46.	12.4	64
120	Lymphocyte generation and population homeostasis throughout life. Seminars in Hematology, 2017, 54, 33-38.	3.4	63
121	Defective T Memory Cell Differentiation after Varicella Zoster Vaccination in Older Individuals. PLoS Pathogens, 2016, 12, e1005892.	4.7	61
122	Glucose metabolism controls disease-specific signatures of macrophage effector functions. JCI Insight, 2018, 3, .	5.0	60
123	T-cell-targeted therapies in rheumatoid arthritis. Nature Clinical Practice Rheumatology, 2006, 2, 201-210.	3.2	59
124	Mechanisms of immunosenescence: lessons from models of accelerated immune aging. Annals of the New York Academy of Sciences, 2012, 1247, 69-82.	3.8	58
125	Regulation of miR-181a expression in T cell aging. Nature Communications, 2018, 9, 3060.	12.8	58
126	DNAâ€dependent protein kinase catalytic subunit mediates Tâ€cell loss in rheumatoid arthritis. EMBO Molecular Medicine, 2010, 2, 415-427.	6.9	57

#	Article	IF	CITATIONS
127	Telomere dysfunction, autoimmunity and aging. , 2011, 2, 524-37.		57
128	Pathogenesis of Giant Cell Arteritis and Takayasu Arteritis—Similarities and Differences. Current Rheumatology Reports, 2020, 22, 68.	4.7	56
129	Uncoupling of T-cell effector functions by inhibitory killer immunoglobulin–like receptors. Blood, 2006, 107, 4449-4457.	1.4	54
130	T Cell Receptor Repertoire in Rheumatoid Arthritis. International Reviews of Immunology, 1998, 17, 339-363.	3.3	53
131	The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy. Autophagy, 2014, 10, 382-383.	9.1	53
132	DNA damage, metabolism and aging in pro-inflammatory T cells. Experimental Gerontology, 2018, 105, 118-127.	2.8	53
133	Vascular damage in giant cell arteritis. Autoimmunity, 2009, 42, 596-604.	2.6	51
134	Succinyl-CoA Ligase Deficiency in Pro-inflammatory and Tissue-Invasive T Cells. Cell Metabolism, 2020, 32, 967-980.e5.	16.2	51
135	Epigenetic regulation of killer immunoglobulin–like receptor expression in T cells. Blood, 2009, 114, 3422-3430.	1.4	50
136	Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radical Biology and Medicine, 2018, 125, 36-43.	2.9	50
137	The Transcription Factor TCF1 in T Cell Differentiation and Aging. International Journal of Molecular Sciences, 2020, 21, 6497.	4.1	49
138	The molecular basis of rheumatoid arthritis. Journal of Molecular Medicine, 1997, 75, 772-785.	3.9	47
139	Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nature Immunology, 2021, 22, 1551-1562.	14.5	47
140	Costimulatory Pathways in Rheumatoid Synovitis and T-Cell Senescence. Annals of the New York Academy of Sciences, 2005, 1062, 182-194.	3.8	46
141	Promoter choice and translational repression determine cell type–specific cell surface density of the inhibitory receptor CD85j expressed on different hematopoietic lineages. Blood, 2010, 115, 3278-3286.	1.4	46
142	Epigenetics of T cell aging. Journal of Leukocyte Biology, 2018, 104, 691-699.	3.3	46
143	Distinct Age-Related Epigenetic Signatures in CD4 and CD8 T Cells. Frontiers in Immunology, 2020, 11, 585168.	4.8	46
144	Age-Associated Failure To Adjust Type I IFN Receptor Signaling Thresholds after T Cell Activation. Journal of Immunology, 2015, 195, 865-874.	0.8	45

#	Article	IF	Citations
145	Vaccination programs for older adults in an era of demographic change. European Geriatric Medicine, 2018, 9, 289-300.	2.8	43
146	Cytokines, growth factors and proteases in medium and large vessel vasculitis. Clinical Immunology, 2019, 206, 33-41.	3.2	43
147	Giant Cell Arteritis: From Pathogenesis to Therapeutic Management. Current Treatment Options in Rheumatology, 2016, 2, 126-137.	1.4	42
148	Transcription factor networks in aged na \tilde{A} ve CD4 T cells bias lineage differentiation. Aging Cell, 2019, 18, e12957.	6.7	42
149	Determinants governing T cell receptor $\hat{l}\pm/\hat{l}^2$ -chain pairing in repertoire formation of identical twins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 532-540.	7.1	42
150	High-throughput sequencing insights into T-cell receptor repertoire diversity in aging. Genome Medicine, 2015, 7, 117.	8.2	40
151	Functional pathways regulated by microRNA networks in CD8 Tâ€cell aging. Aging Cell, 2019, 18, e12879.	6.7	40
152	Cellular Signaling Pathways in Medium and Large Vessel Vasculitis. Frontiers in Immunology, 2020, 11, 587089.	4.8	40
153	Age-Dependent Signature of Metallothionein Expression in Primary CD4 T Cell Responses Is Due to Sustained Zinc Signaling. Rejuvenation Research, 2008, 11, 1001-1011.	1.8	39
154	The life cycle of a T cell after vaccination – where does immune ageing strike?. Clinical and Experimental Immunology, 2016, 187, 71-81.	2.6	39
155	Pro-inflammatory and anti-inflammatory T cells in giant cell arteritis. Joint Bone Spine, 2017, 84, 421-426.	1.6	39
156	The transcription factor RFX5 coordinates antigen-presenting function and resistance to nutrient stress in synovial macrophages. Nature Metabolism, 2022, 4, 759-774.	11.9	39
157	Structural and Functional Characterization of Hla-Dr Molecules Circulating in the Serum. Autoimmunity, 1991, 8, 289-296.	2.6	36
158	Arachidonic acid-regulated calcium signaling in T cells from patients with rheumatoid arthritis promotes synovial inflammation. Nature Communications, 2021, 12, 907.	12.8	35
159	NOTCH-induced rerouting of endosomal trafficking disables regulatory T cells in vasculitis. Journal of Clinical Investigation, 2021, 131, .	8.2	34
160	FOXO1 deficiency impairs proteostasis in aged T cells. Science Advances, 2020, 6, eaba1808.	10.3	33
161	Cytokines in giant-cell arteritis Cleveland Clinic Journal of Medicine, 2002, 69, SII91-SII91.	1.3	32
162	Immune Checkpoint Function of CD85j in CD8 T Cell Differentiation and Aging. Frontiers in Immunology, 2017, 8, 692.	4.8	31

#	Article	IF	CITATIONS
163	T follicular helper cell development and functionality in immune ageing. Clinical Science, 2018, 132, 1925-1935.	4.3	31
164	Innate and Adaptive Immunity in Giant Cell Arteritis. Frontiers in Immunology, 2020, 11, 621098.	4.8	31
165	Immune cell repertoires in breast cancer patients after adjuvant chemotherapy. JCI Insight, 2020, 5, .	5.0	31
166	A population biological approach to understanding the maintenance and loss of the Tâ€eell repertoire during aging. Immunology, 2014, 142, 167-175.	4.4	30
167	CD28 Signaling Controls MetabolicÂFitness of Pathogenic T Cells in Medium and LargeÂVesselÂVasculitis. Journal of the American College of Cardiology, 2019, 73, 1811-1823.	2.8	30
168	Defects in Antiviral T Cell Responses Inflicted by Aging-Associated miR-181a Deficiency. Cell Reports, 2019, 29, 2202-2216.e5.	6.4	30
169	The metabolic signature of T cells in rheumatoid arthritis. Current Opinion in Rheumatology, 2020, 32, 159-167.	4.3	30
170	Metabolic reprogramming in memory CD4 T cell responses of old adults. Clinical Immunology, 2019, 207, 58-67.	3.2	29
171	Systems Biology of Vaccination in the Elderly. Current Topics in Microbiology and Immunology, 2012, 363, 117-142.	1.1	28
172	Neutrophil Extracellular Traps Induce Tissue-Invasive Monocytes in Granulomatosis With Polyangiitis. Frontiers in Immunology, 2019, 10, 2617.	4.8	28
173	HLA Polymorphisms and T Cells in Rheumatoid Arthritis. International Reviews of Immunology, 1999, 18, 37-59.	3.3	24
174	Soluble Hia-Dr Molecules in Patients with Hla Class II Versus Class I Associated Disorders. Autoimmunity, 1991, 8, 281-287.	2.6	23
175	The repertoire of rheumatoid factor–producing b cells in normal subjects and patients with rheumatoid arthritis. Arthritis and Rheumatism, 1993, 36, 1061-1069.	6.7	23
176	miR-181a-regulated pathways in T-cell differentiation and aging. Immunity and Ageing, 2021, 18, 28.	4.2	22
177	Activation of mTORC1 at late endosomes misdirects T cell fate decision in older individuals. Science Immunology, 2021, 6, .	11.9	22
178	Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation. Journal of Clinical Investigation, 2020, 130, 3422-3436.	8.2	22
179	Age as a risk factor in vasculitis. Seminars in Immunopathology, 2022, 44, 281-301.	6.1	22
180	Selection of T cell receptor $\hat{V^2}$ elements by HLA-DR determinants predisposing to Rheumatoid Arthritis. Arthritis and Rheumatism, 1992, 35, 990-998.	6.7	18

#	Article	IF	CITATIONS
181	A facile technology for the high-throughput sequencing of the paired VH:VL and TCRÎ ² :TCRα repertoires. Science Advances, 2020, 6, eaay9093.	10.3	18
182	Histone deficiency and accelerated replication stress in T cell aging. Journal of Clinical Investigation, 2021, 131, .	8.2	17
183	Metabolic Fitness of T Cells in Autoimmune Disease. Immunometabolism, 2020, 2, .	1.6	17
184	Finding Balance: T cell Regulatory Receptor Expression during Aging., 2011, 2, 398-413.		16
185	The cell-surface 5′-nucleotidase CD73 defines a functional T memory cell subset that declines with age. Cell Reports, 2021, 37, 109981.	6.4	15
186	Targets of Immune Regeneration in Rheumatoid Arthritis. Mayo Clinic Proceedings, 2014, 89, 563-575.	3.0	14
187	T-Cell Aging-Associated Phenotypes in Autoimmune Disease. Frontiers in Aging, 2022, 3, .	2.6	14
188	Association of Premature Immune Aging and Cytomegalovirus After Solid Organ Transplant. Frontiers in Immunology, 2021, 12, 661551.	4.8	13
189	Regulatory T Cells in Autoimmune Vasculitis. Frontiers in Immunology, 2022, 13, 844300.	4.8	10
190	Understanding T cell aging to improve anti-viral immunity. Current Opinion in Virology, 2021, 51, 127-133.	5.4	9
191	A Mitochondrial Checkpoint in Autoimmune Disease. Cell Metabolism, 2018, 28, 185-186.	16.2	8
192	The GSK3 $\hat{1}^2$ - $\hat{1}^2$ -catenin-TCF1 pathway improves naive T cell activation in old adults by upregulating miR-181a. Npj Aging and Mechanisms of Disease, 2021, 7, 4.	4.5	8
193	Lysosomes in T Cell Immunity and Aging. Frontiers in Aging, 2021, 2, .	2.6	6
194	Hyperactivity of the CD155 immune checkpoint suppresses anti-viral immunity in patients with coronary artery disease., 2022, 1, 634-648.		5
195	Granulomatosis with Polyangiitis (Wegener's). , 0, , 238-251.		3
196	IL-4 prevents adenosine-mediated immunoregulation by inhibiting CD39 expression. JCI Insight, 2022, 7, .	5.0	3
197	T-CELL DERIVED LYMPHOKINES AS REGULATORS OF CHRONIC INFLAMMATION. American Journal of Therapeutics, 1996, 3, 109-114.	0.9	2
198	Lymphocytes T pro-inflammatoires et anti-inflammatoires dans l'artérite à cellules géantes. Revue Du Rhumatisme (Edition Francaise), 2017, 84, 94-100.	0.0	2

#	Article	IF	CITATIONS
199	T cell aging in hypertension. Cardiovascular Research, 2021, 117, 21-23.	3.8	1
200	Structural constraints in T-cell repertoire selection predicted by machine learning. Genes and Immunity, 2021, 22, 203-204.	4.1	1
201	Age, T Cell Homeostasis, and T Cell Diversity in Humans. , 2019, , 303-322.		1
202	Reduced chromatin accessibility to CD4 T cell super-enhancers encompassing susceptibility loci of rheumatoid arthritis. EBioMedicine, 2022, 76, 103825.	6.1	1
203	HLA-DRB1 haplotype did not affect the medium-term results of total knee arthroplasty in patients with rheumatoid arthritis. Modern Rheumatology, 2004, 14, 37-42.	1.8	0
204	Large and Medium Vessel Vasculitides. , 2014, , 1087-1103.		0
205	Response to Comment on "Diversification of the antigen-specific T cell receptor repertoire after varicella zoster vaccination― Science Translational Medicine, 2017, 9, .	12.4	0
206	Granulomatous Inflammation. , 2018, , 303-356.		0
207	Age, T Cell Homeostasis, and T Cell Diversity in Humans. , 2018, , 1-20.		0
208	Large and Medium-Vessel Vasculitides. , 2020, , 1313-1334.		0
209	Large and Medium Vessel Vasculitides. , 2006, , 921-934.		0
210	Innate Immunity in Atherosclerosis. , 0, , 136-146.		0
211	Vascular Development. , 0, , 1-14.		0
212	Abstract 424: Hyper-Inflammatory Macrophages in Coronary Artery Disease and Rheumatoid Arthritis; A Signature of CCL18, Kr $\tilde{A}^{1}/4$ ppel-like Factor 2 and 4 and Oxidative Stress Response Genes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	O