Hans-Peter E Kohler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1277022/publications.pdf

Version: 2024-02-01

38742 58581 7,653 126 50 citations h-index papers

g-index 133 133 133 7386 docs citations times ranked citing authors all docs

82

#	Article	IF	CITATIONS
1	Biochemistry of Microbial Degradation of Hexachlorocyclohexane and Prospects for Bioremediation. Microbiology and Molecular Biology Reviews, 2010, 74, 58-80.	6.6	331
2	Anaerobic Degradation of Decabromodiphenyl Ether. Environmental Science & Emp; Technology, 2005, 39, 1078-1083.	10.0	317
3	Biodegradation of synthetic polymers in soils: Tracking carbon into CO ₂ and microbial biomass. Science Advances, 2018, 4, eaas9024.	10.3	284
4	Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes?. Water Research, 2013, 47, 5955-5976.	11.3	275
5	Occurrence and Fate of Antibiotics as Trace Contaminants in Wastewaters, Sewage Sludges, and Surface Waters. Chimia, 2003, 57, 485-491.	0.6	259
6	Benzotriazole and Tolyltriazole as Aquatic Contaminants. 1. Input and Occurrence in Rivers and Lakes. Environmental Science &	10.0	250
7	High-Throughput Identification of Microbial Transformation Products of Organic Micropollutants. Environmental Science & Environmental & Environmental & Environmental & Environmental & Environmental	10.0	250
8	Oxidation of Antibacterial Compounds by Ozone and Hydroxyl Radical: Elimination of Biological Activity during Aqueous Ozonation Processes. Environmental Science & Environmental Science & 2498-2504.	10.0	233
9	Anaerobic degradation of brominated flame retardants in sewage sludge. Chemosphere, 2006, 64, 311-317.	8.2	189
10	Occurrence and Mass Flows of Fluorochemicals in the Glatt Valley Watershed, Switzerland. Environmental Science & Environmental	10.0	159
11	Occurrence and sources of selected phenolic endocrine disruptors in Ria de Aveiro, Portugal. Environmental Science and Pollution Research, 2010, 17, 834-843.	5.3	129
12	Mass flows of endocrine disruptors in the Clatt River during varying weather conditions. Environmental Pollution, 2009, 157, 714-723.	7.5	128
13	The Broad Substrate Chlorobenzene Dioxygenase and cis-Chlorobenzene Dihydrodiol Dehydrogenase of Pseudomonas sp. Strain P51 Are Linked Evolutionarily to the Enzymes for Benzene and Toluene Degradation. Journal of Biological Chemistry, 1996, 271, 4009-4016.	3.4	122
14	Systematic Exploration of Biotransformation Reactions of Amine-Containing Micropollutants in Activated Sludge. Environmental Science & Environmental S	10.0	111
15	Biotransformation of Selected Iodinated X-ray Contrast Media and Characterization of Microbial Transformation Pathways. Environmental Science & Enviro	10.0	109
16	Isomer-Specific Degradation and Endocrine Disrupting Activity of Nonylphenols. Environmental Science &	10.0	107
17	Differential Degradation of Nonylphenol Isomers by Sphingomonas xenophaga Bayram. Applied and Environmental Microbiology, 2005, 71, 1123-1129.	3.1	106
18	<i>ipso</i> -Hydroxylation and Subsequent Fragmentation: a Novel Microbial Strategy To Eliminate Sulfonamide Antibiotics. Applied and Environmental Microbiology, 2013, 79, 5550-5558.	3.1	105

#	Article	IF	CITATIONS
19	Temporal Trends, Congener Patterns, and Sources of Octa-, Nona-, and Decabromodiphenyl Ethers (PBDE) and Hexabromocyclododecanes (HBCD) in Swiss Lake Sediments. Environmental Science & Emp; Technology, 2008, 42, 6378-6384.	10.0	100
20	Association of Biodiversity with the Rates of Micropollutant Biotransformations among Full-Scale Wastewater Treatment Plant Communities. Applied and Environmental Microbiology, 2015, 81, 666-675.	3.1	98
21	Enantioselective Transformation of α-Hexachlorocyclohexane by the Dehydrochlorinases LinA1 and LinA2 from the Soil Bacterium Sphingomonas paucimobilis B90A. Applied and Environmental Microbiology, 2005, 71, 8514-8518.	3.1	93
22	Structure-Based Interpretation of Biotransformation Pathways of Amide-Containing Compounds in Sludge-Seeded Bioreactors. Environmental Science & Envir	10.0	93
23	Transformation of \hat{l}^2 -Lactam Antibacterial Agents during Aqueous Ozonation: Reaction Pathways and Quantitative Bioassay of Biologically-Active Oxidation Products. Environmental Science & Emp; Technology, 2010, 44, 5940-5948.	10.0	92
24	Haloalkane Dehalogenase LinB Is Responsible for \hat{l}^2 - and \hat{l} -Hexachlorocyclohexane Transformation in Sphingobium indicum B90A. Applied and Environmental Microbiology, 2006, 72, 5720-5727.	3.1	90
25	Enzymatic Hydrolysis of Polyester Thin Films at the Nanoscale: Effects of Polyester Structure and Enzyme Active-Site Accessibility. Environmental Science & Documental Science & 2017, 51, 7476-7485.	10.0	89
26	A Novel Metabolic Pathway for Degradation of 4-Nonylphenol Environmental Contaminants by Sphingomonas xenophaga Bayram. Journal of Biological Chemistry, 2005, 280, 15526-15533.	3.4	87
27	Dos and Do Nots When Assessing the Biodegradation of Plastics. Environmental Science & Emp; Technology, 2019, 53, 9967-9969.	10.0	87
28	Changes in the Enantiomeric Ratio of (R)- to (S)-Mecoprop Indicate in Situ Biodegradation of This Chiral Herbicide in a Polluted Aquifer. Environmental Science & Environmental Science & 2070-2076.	10.0	84
29	Emerging chemicals and the evolution of biodegradation capacities and pathways in bacteria. Current Opinion in Biotechnology, 2014, 27, 8-14.	6.6	82
30	Slow Biotransformation of Carbon Nanotubes by Horseradish Peroxidase. Environmental Science & Environm	10.0	77
31	An integrated process for the production of toxic catechols from toxic phenols based on a designer biocatalyst., 1999, 62, 641-648.		75
32	Purification and Characterization of 2-Hydroxybiphenyl 3-Monooxygenase, a Novel NADH-dependent, FAD-containing Aromatic Hydroxylase from Pseudomonas azelaica HBP1. Journal of Biological Chemistry, 1997, 272, 24257-24265.	3.4	73
33	On the Biodegradation of \hat{l}^2 -Peptides Part of the PhD thesis of J.V.S. Dissertation no. 14298, ETH ZÃ $\frac{1}{4}$ rich, 2001 ChemBioChem, 2002, 3, 424.	2.6	71
34	The activity level of a microbial community function can be predicted from its metatranscriptome. ISME Journal, 2012, 6, 902-904.	9.8	70
35	HbpR, a New Member of the XylR/DmpR Subclass within the NtrC Family of Bacterial Transcriptional Activators, Regulates Expression of 2-Hydroxybiphenyl Metabolism in Pseudomonas azelaica HBP1. Journal of Bacteriology, 2000, 182, 405-417.	2.2	69
36	Enantioselective Uptake and Degradation of the Chiral Herbicide Dichlorprop [(<i>RS</i>) Tj ETQq0 0 0 rgBT /O Bacteriology, 1998, 180, 3368-3374.	verlock 10 2.2) Tf 50 67 Td () 67

Bacteriology, 1998, 180, 3368-3374.

#	Article	IF	Citations
37	Changing the Substrate Reactivity of 2-Hydroxybiphenyl 3-Monooxygenase from Pseudomonas azelaica HBP1 by Directed Evolution. Journal of Biological Chemistry, 2002, 277, 5575-5582.	3.4	66
38	FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics. Scientific Reports, 2017, 7, 15783.	3.3	66
39	Isomer-Specific Determination of 4-Nonylphenols Using Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry. Environmental Science & Environmental	10.0	64
40	Preparative scale production of 3-substituted catechols using a novel monooxygenase from Pseudomonas azelaica HBP 1. Journal of Molecular Catalysis B: Enzymatic, 1998, 5, 87-93.	1.8	62
41	The historical record of PCB and PCDD/F deposition at Greifensee, a lake of the Swiss plateau, between 1848 and 1999. Chemosphere, 2007, 67, 1754-1761.	8.2	61
42	Biotransformation of Hexabromocyclododecanes (HBCDs) with LinBâ€"An HCH-Converting Bacterial Enzyme. Environmental Science & Enzyme. Environmental Science & Enzyme. Environmental Science & Enzyme. Environmental Science & Enzyme.	10.0	61
43	Hydroxylation of Indole by Laboratory-evolved 2-Hydroxybiphenyl 3-Monooxygenase. Journal of Biological Chemistry, 2002, 277, 34161-34167.	3.4	59
44	Fate of the herbicides mecoprop, dichlorprop, and 2,4-D in aerobic and anaerobic sewage sludge as determined by laboratory batch studies and enantiomer-specific analysis. Biodegradation, 1999, 10, 271-278.	3.0	56
45	Quantification of Synthetic Polyesters from Biodegradable Mulch Films in Soils. Environmental Science & Environmental Science	10.0	56
46	Enzymatic Degradation ofÎ ² - and Mixedα,Î ² -Oligopeptides. Chemistry and Biodiversity, 2006, 3, 1325-1348.	2.1	55
47	Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2. Applied Microbiology and Biotechnology, 2014, 98, 8235-8252.	3.6	55
48	Genetic Analysis of Phenoxyalkanoic Acid Degradation in Sphingomonas herbicidovorans MH. Applied and Environmental Microbiology, 2004, 70, 6066-6075.	3.1	54
49	Purification and Characterization of Two Enantioselective α-Ketoglutarate-Dependent Dioxygenases, RdpA and SdpA, from Sphingomonas herbicidovorans MH. Applied and Environmental Microbiology, 2006, 72, 4853-4861.	3.1	52
50	Hydroxylated Metabolites of \hat{l}^2 - and \hat{l}' -Hexachlorocyclohexane: \hat{A} Bacterial Formation, Stereochemical Configuration, and Occurrence in Groundwater at a Former Production Site. Environmental Science & Environmental & Environm	10.0	51
51	Anaerobic testosterone degradation in Steroidobacter denitrificans – Identification of transformation products. Environmental Pollution, 2010, 158, 2572-2581.	7.5	51
52	Environmental fate of phenolic endocrine disruptors: field and laboratory studies. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 3941-3963.	3.4	50
53	Carbon monoxide dehydrogenase and acetate thiokinase inMethanothrix soehngenii. FEMS Microbiology Letters, 1984, 21, 287-292.	1.8	49
54	5'-Methylbenzimidazolyl-cobamides are the corrinoids from some sulfate-reducing and sulfur-metabolizing bacteria. FEBS Journal, 1988, 176, 461-469.	0.2	49

#	Article	IF	CITATIONS
55	Photochemical Transformation of Poly(butylene adipate- <i>co</i> -terephthalate) and Its Effects on Enzymatic Hydrolyzability. Environmental Science & Enzymatic Hydrolyzability. Environmental Science & Enzymatic Hydrolyzability.	10.0	45
56	Catalytic Mechanism of 2-Hydroxybiphenyl 3-Monooxygenase, a Flavoprotein from Pseudomonas azelaica HBP1. Journal of Biological Chemistry, 1999, 274, 33355-33365.	3.4	43
57	Bacterial ?-peptidyl aminopeptidases with unique substrate specificities for ?-oligopeptides and mixed ?,?-oligopeptides. FEBS Journal, 2006, 273, 5261-5272.	4.7	43
58	Description of Sphingosinicella xenopeptidilytica sp. nov., a \hat{l}^2 -peptide-degrading species, and emended descriptions of the genus Sphingosinicella and the species Sphingosinicella microcystinivorans. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 107-113.	1.7	41
59	New Metabolites in the Degradation of α- and γ-Hexachlorocyclohexane (HCH): Pentachlorocyclohexenes Are Hydroxylated to Cyclohexenols and Cyclohexenediols by the Haloalkane Dehalogenase LinB from Sphingobium indicum B90A. Journal of Agricultural and Food Chemistry. 2008. 56. 6594-6603.	5.2	41
60	Assessing the environmental transformation of nanoplastic through 13C-labelled polymers. Nature Nanotechnology, 2019, 14, 301-303.	31.5	41
61	Bacterial Cell Penetration by \hat{I}^2 3-Oligohomoarginines: Indications for Passive Transfer through the Lipid Bilayer. ChemBioChem, 2005, 6, 982-985.	2.6	40
62	Elucidation of the ipso -Substitution Mechanism for Side-Chain Cleavage of α-Quaternary 4-Nonylphenols and 4- t -Butoxyphenol in Sphingobium xenophagum Bayram. Applied and Environmental Microbiology, 2007, 73, 3320-3326.	3.1	40
63	Kinetic Resolution of Aliphatic βâ€Amino Acid Amides by βâ€Aminopeptidases. ChemBioChem, 2009, 10, 1558-1	5 ø. b.	40
64	Enzymeâ \in Catalyzed Formation of $\langle i \rangle \hat{l}^2 \langle i \rangle \hat{a} \in$ Peptides: $\langle i \rangle \hat{l}^2 \langle i \rangle \hat{a} \in$ Peptidyl Aminopeptidases BapA and DmpA Actias $\langle i \rangle \hat{l}^2 \langle i \rangle \hat{a} \in$ Peptideâ \in Synthesizing Enzymes. Chemistry and Biodiversity, 2007, 4, 2016-2030.	ng 2.1	39
65	NOM degradation during river infiltration: Effects of the climate variables temperature and discharge. Water Research, 2013, 47, 6585-6595.	11.3	39
66	Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation. Biodegradation, 2016, 27, 179-193.	3.0	39
67	Metabolomics of hexachlorocyclohexane (<scp>HCH</scp>) transformation: ratio of <scp>LinA</scp> to <scp>LinB</scp> determines metabolic fate of <scp>HCH</scp> isomers. Environmental Microbiology, 2013, 15, 1040-1049.	3.8	38
68	Transcriptional Organization and Dynamic Expression of the hbpCAD Genes, Which Encode the First Three Enzymes for 2-Hydroxybiphenyl Degradation in Pseudomonas azelaica HBP1. Journal of Bacteriology, 2001, 183, 270-279.	2.2	37
69	A Novel \hat{l}^2 -Peptidyl Aminopeptidase (BapA) from Strain 3-2W4 Cleaves Peptide Bonds of Synthetic \hat{l}^2 -Tri- and \hat{l}^2 -Dipeptides. Journal of Bacteriology, 2005, 187, 5910-5917.	2.2	37
70	Kinetics and Yields of Pesticide Biodegradation at Low Substrate Concentrations and under Conditions Restricting Assimilable Organic Carbon. Applied and Environmental Microbiology, 2014, 80, 1306-1313.	3.1	37
71	Degradation of sulfonamide antibiotics by Microbacterium sp. strain BR1 – elucidating the downstream pathway. New Biotechnology, 2015, 32, 710-715.	4.4	37
72	Ion Trapping of Amines in Protozoa: A Novel Removal Mechanism for Micropollutants in Activated Sludge. Environmental Science &	10.0	37

#	Article	IF	CITATIONS
73	Enzymatic Conversion of ε-Hexachlorocyclohexane and a Heptachlorocyclohexane Isomer, Two Neglected Components of Technical Hexachlorocyclohexane. Environmental Science & Technology, 2012, 46, 4051-4058.	10.0	35
74	High-Throughput Analysis of Enzymatic Hydrolysis of Biodegradable Polyesters by Monitoring Cohydrolysis of a Polyester-Embedded Fluorogenic Probe. Environmental Science & Dy Technology, 2017, 51, 4358-4367.	10.0	35
75	Simple enzymatic procedure for <scp>l</scp> â€earnosine synthesis: wholeâ€eell biocatalysis and efficient biocatalyst recycling. Microbial Biotechnology, 2010, 3, 74-83.	4.2	34
76	Enzymatic Hydrolysis of Polyester Thin Films: Real-Time Analysis of Film Mass Changes and Dissipation Dynamics. Environmental Science & Environmental	10.0	34
77	Biotransformation of Various Substituted Aromatic Compounds to Chiral Dihydrodihydroxy Derivatives. Applied and Environmental Microbiology, 2001, 67, 3333-3339.	3.1	33
78	LinA2, a HCH-converting bacterial enzyme that dehydrohalogenates HBCDs. Chemosphere, 2014, 107, 194-202.	8.2	33
79	Column studies to assess the effects of climate variables on redox processes during riverbank filtration. Water Research, 2014, 61, 263-275.	11.3	32
80	Synthesis of 3-tert-butylcatechol by an engineered monooxygenase. Biotechnology and Bioengineering, 2003, 81, 518-524.	3.3	31
81	Small ¹³ C/ ¹² C Fractionation Contrasts with Large Enantiomer Fractionation in Aerobic Biodegradation of Phenoxy Acids. Environmental Science & Environmen	10.0	31
82	Biotransformation of short-chain chlorinated paraffins (SCCPs) with LinA2: A HCH and HBCD converting bacterial dehydrohalogenase. Chemosphere, 2019, 226, 744-754.	8.2	31
83	Leaching and Primary Biodegradation of Sulfonated Naphthalenes and Their Formaldehyde Condensates from Concrete Superplasticizers in Groundwater Affected by Tunnel Construction. Environmental Science & Technology, 2002, 36, 3284-3289.	10.0	28
84	Purification and characterization of hydroquinone dioxygenase from Sphingomonas sp. strain TTNP3. AMB Express, 2011, 1, 8.	3.0	27
85	Stereochemistry of LinB-catalyzed biotransformation of Î'-HBCD to 1R,2R,5S,6R,9R,10S-pentabromocyclododecanol. Chemosphere, 2013, 90, 1911-1919.	8.2	27
86	Substrate and Enzyme Specificity of the Kinetic Isotope Effects Associated with the Dioxygenation of Nitroaromatic Contaminants. Environmental Science & Environmental Science & 2016, 50, 6708-6716.	10.0	27
87	<i>i>ipso</i> â€Substitution: A General Biochemical and Biodegradation Mechanism to Cleave <i>î±</i> â€Quaternary Alkylphenols and Bisphenol A. Chemistry and Biodiversity, 2007, 4, 2123-2137.	2.1	25
88	Isotope Effects of Enzymatic Dioxygenation of Nitrobenzene and 2-Nitrotoluene by Nitrobenzene Dioxygenase. Environmental Science & Environmental Scien	10.0	24
89	Kinetic Isotope Effects of the Enzymatic Transformation of \hat{l}^3 -Hexachlorocyclohexane by the Lindane Dehydrochlorinase Variants LinA1 and LinA2. Environmental Science & Eamp; Technology, 2019, 53, 2353-2363.	10.0	23
90	ipso-Substitution $\hat{a}\in$ A Novel Pathway for Microbial Metabolism of Endocrine-Disrupting 4-Nonylphenols, 4-Alkoxyphenols, and Bisphenol A. Chimia, 2008, 62, 358.	0.6	22

#	Article	IF	Citations
91	Biotransformation of hexabromocyclododecanes with hexachlorocyclohexane-transforming Sphingobium chinhatense strain IP26. Chemosphere, 2017, 182, 491-500.	8.2	22
92	Assessing Aerobic Biotransformation of Hexachlorocyclohexane Isomers by Compound-Specific Isotope Analysis. Environmental Science & Environmental Scie	10.0	20
93	<i>ci>cis</i> -Chlorobenzene Dihydrodiol Dehydrogenase (TcbB) from <i>Pseudomonas</i> sp. Strain P51, Expressed in <i>Escherichia coli</i> DH5α(pTCB149), Catalyzes Enantioselective Dehydrogenase Reactions. Applied and Environmental Microbiology, 1999, 65, 5242-5246.	3.1	20
94	A Model Framework to Describe Growth-Linked Biodegradation of Trace-Level Pollutants in the Presence of Coincidental Carbon Substrates and Microbes. Environmental Science & E	10.0	19
95	Transformation of short-chain chlorinated paraffins by the bacterial haloalkane dehalogenase LinB – Formation of mono- and di-hydroxylated metabolites. Chemosphere, 2021, 262, 128288.	8.2	19
96	βâ€Aminopeptidaseâ€Catalyzed Biotransformations of β ² â€Dipeptides: Kinetic Resolution and Enzymatic Coupling. ChemBioChem, 2010, 11, 1129-1136.	2.6	18
97	Stereochemistry of enzymatic transformations of (+)β- and (â^³)β-HBCD with LinA2 – A HCH-degrading bacterial enzyme of Sphingobium indicum B90A. Chemosphere, 2015, 122, 70-78.	8.2	18
98	Selective hydrolysis of the nitrile group of cis-dihydrodiols from aromatic nitriles. Journal of Molecular Catalysis B: Enzymatic, 2006, 38, 76-83.	1.8	17
99	Isolation of the (+)-Pinoresinol-Mineralizing Pseudomonas sp. Strain SG-MS2 and Elucidation of Its Catabolic Pathway. Applied and Environmental Microbiology, 2018, 84, .	3.1	15
100	Kinetics and stereochemistry of LinB-catalyzed \hat{l} -HBCD transformation: Comparison of in \hat{A} vitro and in silico results. Chemosphere, 2018, 207, 118-129.	8.2	15
101	Catabolism of the groundwater micropollutant 2,6-dichlorobenzamide beyond 2,6-dichlorobenzoate is plasmid encoded in Aminobacter sp. MSH1. Applied Microbiology and Biotechnology, 2018, 102, 7963-7979.	3.6	15
102	Aerobic biodegradation of chiral phenoxyalkanoic acid derivatives during incubations with activated sludge. FEMS Microbiology Ecology, 1999, 29, 197-204.	2.7	14
103	The Missing Link in Linear Alkylbenzenesulfonate Surfactant Degradation: 4-Sulfoacetophenone as a Transient Intermediate in the Degradation of 3-(4-Sulfophenyl)Butyrate by <i>Comamonas testosteroni</i> KF-1. Applied and Environmental Microbiology, 2010, 76, 196-202.	3.1	14
104	Autoproteolytic and Catalytic Mechanisms for the β-Aminopeptidase BapAâ€"A Member of the Ntn Hydrolase Family. Structure, 2012, 20, 1850-1860.	3.3	14
105	Isolation of cobamides from Methanothrix soehngenii: 5-methylbenzimidazole as the ?-ligand of the predominant cobamide. Archives of Microbiology, 1988, 150, 219-223.	2.2	13
106	E. coli JM109 pHBP461, a recombinant biocatalyst for the regioselective monohydroxylation of ortho-substituted phenols to their corresponding 3-substituted catechols. Journal of Molecular Catalysis B: Enzymatic, 1998, 5, 311-316.	1.8	13
107	Formation of Toxic 2-Nonyl- <i>p</i> -Renzoquinones from α-Tertiary 4-Nonylphenol Isomers during Microbial Metabolism of Technical Nonylphenol. Environmental Science & Environ	10.0	13
108	Degradation of 2-sec-butylphenol: 3-sec-butylcatechol,2-hydroxy-6-oxo-7-methylnona-2,4-dienoic acid, and 2-methylbutyric acid as intermediates. Biodegradation, 1993, 4, 81-89.	3.0	12

#	Article	IF	CITATIONS
109	Bacterial <i>i)î²</i> eAminopeptidases: Structural Insights and Applications for Biocatalysis. Chemistry and Biodiversity, 2012, 9, 2388-2409.	2.1	12
110	<i>Aminobacter</i> sp. MSH1 Mineralizes the Groundwater Micropollutant 2,6-Dichlorobenzamide through a Unique Chlorobenzoate Catabolic Pathway. Environmental Science & Echnology, 2019, 53, 10146-10156.	10.0	11
111	Transformation of short-chain chlorinated paraffins and olefins with the bacterial dehalogenase LinB from Sphingobium Indicum $\hat{a} \in \text{``Indict}$ Kinetic models for the homologue-specific conversion of reactive and persistent material. Chemosphere, 2021, 283, 131199.	8.2	11
112	An unexpected gene cluster for downstream degradation of alkylphenols in Sphingomonas sp. strain TTNP3. Applied Microbiology and Biotechnology, 2012, 93, 1315-1324.	3.6	10
113	Substrate-Specific Coupling of O ₂ Activation to Hydroxylations of Aromatic Compounds by Rieske Non-heme Iron Dioxygenases. ACS Catalysis, 2022, 12, 6444-6456.	11.2	10
114	Important amino acid residues of hexachlorocyclohexane dehydrochlorinases (LinA) for enantioselective transformation of hexachlorocyclohexane isomers. Biodegradation, 2017, 28, 171-180.	3.0	9
115	Characterization of Substrate, Cosubstrate, and Product Isotope Effects Associated With Enzymatic Oxygenations of Organic Compounds Based on Compound-Specific Isotope Analysis. Methods in Enzymology, 2017, 596, 291-329.	1.0	9
116	Enantioselective Dehydrochlorination of δ-Hexachlorocyclohexane and δ-Pentachlorocyclohexene by LinA1 and LinA2 from Sphingobium indicum B90A. Applied and Environmental Microbiology, 2013, 79, 6180-6183.	3.1	8
117	Effect of Chirality on the Microbial Degradation and the Environmental Fate of Chiral Pollutants. Advances in Microbial Ecology, 2000, , 201-231.	0.1	8
118	Modelling carbofuran biotransformation by <i>Novosphingobium</i> sp. KN65.2 in the presence of coincidental carbon and indigenous microbes. Environmental Science: Water Research and Technology, 2019, 5, 798-807.	2.4	7
119	Enzymatic synthesis and formation kinetics of mono- and di-hydroxylated chlorinated paraffins with the bacterial dehalogenase LinB from Sphingobium indicum. Chemosphere, 2022, 291, 132939.	8.2	7
120	Elucidating the Role of O ₂ Uncoupling in the Oxidative Biodegradation of Organic Contaminants by Rieske Non-heme Iron Dioxygenases. ACS Environmental Au, 2022, 2, 428-440.	7.0	7
121	Transformation of \hat{I}^2 -lactam Antibacterial Agents during Aqueous Ozonation: Reaction Pathways and Quantitative Bioassay of Biologically-Active Oxidation Products. Environmental Science & Emp; Technology, 2010, 44, 8790-8790.	10.0	6
122	Enzyme Kinetics of Organic Contaminant Oxygenations. Chimia, 2020, 74, 108.	0.6	6
123	Transformation of Îμ-HBCD with the Sphingobium Indicum enzymes LinA1, LinA2 and LinATM, a triple mutant of LinA2. Chemosphere, 2021, 267, 129217.	8.2	6
124	Crystal Structures of BapA Complexes with βâ€Lactamâ€Derived Inhibitors Illustrate Substrate Specificity and Enantioselectivity of βâ€Aminopeptidases. ChemBioChem, 2012, 13, 2137-2145.	2.6	5
125	Labeling and Protecting <i>N</i> à€Terminal Protein Positions by <i>β</i> àâ€Peptidyl Aminopeptidaseâ€Catalyzed Attachment of <i>β</i> àâ€Aminoâ€Acid Residues – Insulin as a First Example. Helvetica Chimica Acta, 2018, 101 e1700259.	,1.6	3
126	Crystallization and preliminary X-ray analysis of native and selenomethionine 2-hydroxybiphenyl 3-monooxygenase. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 741-743.	2.5	1