Zengchao Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1276832/publications.pdf Version: 2024-02-01

ΖΕΝΟΟΗΛΟ ΗΛΟ

#	Article	IF	CITATIONS
1	Multivariate Standardized Drought Index: A parametric multi-index model. Advances in Water Resources, 2013, 57, 12-18.	3.8	577
2	Drought characterization from a multivariate perspective: A review. Journal of Hydrology, 2015, 527, 668-678.	5.4	397
3	Global integrated drought monitoring and prediction system. Scientific Data, 2014, 1, 140001.	5.3	383
4	Seasonal Drought Prediction: Advances, Challenges, and Future Prospects. Reviews of Geophysics, 2018, 56, 108-141.	23.0	323
5	A Nonparametric Multivariate Multi-Index Drought Monitoring Framework. Journal of Hydrometeorology, 2014, 15, 89-101.	1.9	280
6	Changes in concurrent monthly precipitation and temperature extremes. Environmental Research Letters, 2013, 8, 034014.	5.2	248
7	Propagation from meteorological drought to hydrological drought under the impact of human activities: A case study in northern China. Journal of Hydrology, 2019, 579, 124147.	5.4	127
8	Changes in the severity of compound drought and hot extremes over global land areas. Environmental Research Letters, 2018, 13, 124022.	5.2	114
9	An Overview of Drought Monitoring and Prediction Systems at Regional and Global Scales. Bulletin of the American Meteorological Society, 2017, 98, 1879-1896.	3.3	96
10	Variations of compound precipitation and temperature extremes in China during 1961–2014. Science of the Total Environment, 2019, 663, 731-737.	8.0	96
11	Compound Extremes in Hydroclimatology: A Review. Water (Switzerland), 2018, 10, 718.	2.7	91
12	Review of dependence modeling in hydrology and water resources. Progress in Physical Geography, 2016, 40, 549-578.	3.2	89
13	Probabilistic evaluation of the impact of compound dry-hot events on global maize yields. Science of the Total Environment, 2019, 689, 1228-1234.	8.0	87
14	Evaluation of CHIRPS and its application for drought monitoring over the Haihe River Basin, China. Natural Hazards, 2018, 92, 155-172.	3.4	74
15	Quantifying the relationship between compound dry and hot events and El Niño–southern Oscillation (ENSO) at the global scale. Journal of Hydrology, 2018, 567, 332-338.	5.4	70
16	Assessment of soil erosion characteristics in response to temperature and precipitation in a freeze-thaw watershed. Geoderma, 2018, 328, 56-65.	5.1	63
17	Regional and Global Land Data Assimilation Systems: Innovations, Challenges, and Prospects. Journal of Meteorological Research, 2019, 33, 159-189.	2.4	63
18	An integrated package for drought monitoring, prediction and analysis to aid drought modeling and assessment. Environmental Modelling and Software, 2017, 91, 199-209.	4.5	62

Ζενςснао Ηαο

#	Article	IF	CITATIONS
19	A Framework for Exploring Joint Effects of Conditional Factors on Compound Floods. Water Resources Research, 2018, 54, 2681-2696.	4.2	61
20	Probabilistic prediction of hydrologic drought using a conditional probability approach based on the meta-Gaussian model. Journal of Hydrology, 2016, 542, 772-780.	5.4	59
21	Characterization of agricultural drought propagation over China based on bivariate probabilistic quantification. Journal of Hydrology, 2021, 598, 126194.	5.4	59
22	Statistical prediction of the severity of compound dry-hot events based on El Niño-Southern Oscillation. Journal of Hydrology, 2019, 572, 243-250.	5.4	58
23	Agricultural drought prediction in China based on drought propagation and large-scale drivers. Agricultural Water Management, 2021, 255, 107028.	5.6	57
24	Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors. Science of the Total Environment, 2022, 838, 156021.	8.0	57
25	A theoretical drought classification method for the multivariate drought index based on distribution properties of standardized drought indices. Advances in Water Resources, 2016, 92, 240-247.	3.8	56
26	Using river sediments to analyze the driving force difference for non-point source pollution dynamics between two scales of watersheds. Water Research, 2018, 139, 311-320.	11.3	56
27	Evaluation of severity changes of compound dry and hot events in China based on a multivariate multi-index approach. Journal of Hydrology, 2020, 583, 124580.	5.4	55
28	Snowmelt water drives higher soil erosion than rainfall water in a mid-high latitude upland watershed. Journal of Hydrology, 2018, 556, 438-448.	5.4	51
29	Projected increase in compound dry and hot events over global land areas. International Journal of Climatology, 2021, 41, 393-403.	3.5	51
30	Integrating Entropy and Copula Theories for Hydrologic Modeling and Analysis. Entropy, 2015, 17, 2253-2280.	2.2	45
31	A multivariate approach for statistical assessments of compound extremes. Journal of Hydrology, 2018, 565, 87-94.	5.4	44
32	Dry-hot magnitude index: a joint indicator for compound event analysis. Environmental Research Letters, 2019, 14, 064017.	5.2	44
33	A monitoring and prediction system for compound dry and hot events. Environmental Research Letters, 2019, 14, 114034.	5.2	44
34	A general framework for multivariate multi-index drought prediction based on Multivariate Ensemble Streamflow Prediction (MESP). Journal of Hydrology, 2016, 539, 1-10.	5.4	43
35	Quantitative risk assessment of the effects of drought on extreme temperature in eastern China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9050-9059.	3.3	43
36	Quantifying likelihoods of extreme occurrences causing maize yield reduction at the global scale. Science of the Total Environment, 2020, 704, 135250.	8.0	39

Ζενςснао Ηαο

#	Article	IF	CITATIONS
37	Compound Events under Global Warming: A Dependence Perspective. Journal of Hydrologic Engineering - ASCE, 2020, 25, .	1.9	39
38	Exposure inequality assessment for PM2.5 and the potential association with environmental health in Beijing. Science of the Total Environment, 2018, 635, 769-778.	8.0	37
39	Effects of soil moisture content on upland nitrogen loss. Journal of Hydrology, 2017, 546, 71-80.	5.4	35
40	Spatial and Temporal Variations of Compound Droughts and Hot Extremes in China. Atmosphere, 2019, 10, 95.	2.3	35
41	Projections of future meteorological droughts in China under CMIP6 from a threeâ€dimensional perspective. Agricultural Water Management, 2021, 252, 106849.	5.6	34
42	Impact of dependence changes on the likelihood of hot extremes under drought conditions in the United States. Journal of Hydrology, 2020, 581, 124410.	5.4	33
43	Patterns of precipitation and soil moisture extremes in Texas, US: A complex network analysis. Advances in Water Resources, 2018, 112, 203-213.	3.8	32
44	A database for characteristics and variations of global compound dry and hot events. Weather and Climate Extremes, 2020, 30, 100299.	4.1	31
45	Probabilistic assessments of the impacts of compound dry and hot events on global vegetation during growing seasons. Environmental Research Letters, 2021, 16, 074055.	5.2	30
46	Changes in the dependence between global precipitation and temperature from observations and model simulations. International Journal of Climatology, 2019, 39, 4895-4906.	3.5	29
47	Influence of Large cale Circulation Patterns on Compound Dry and Hot Events in China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033918.	3.3	28
48	A Statistical Method for Categorical Drought Prediction Based on NLDAS-2. Journal of Applied Meteorology and Climatology, 2016, 55, 1049-1061.	1.5	27
49	Extended growing season reduced river runoff in Luanhe River basin. Journal of Hydrology, 2020, 582, 124538.	5.4	27
50	Increase in compound dry-warm and wet-warm events under global warming in CMIP6 models. Global and Planetary Change, 2022, 210, 103773.	3.5	25
51	Changes in fertilizer categories significantly altered the estimates of ammonia volatilizations induced from increased synthetic fertilizer application to Chinese rice fields. Agriculture, Ecosystems and Environment, 2018, 265, 112-122.	5.3	24
52	Statistical modelling and climate variability of compound surge and precipitation events in a managed water system: a case study in the Netherlands. Hydrology and Earth System Sciences, 2021, 25, 3595-3615.	4.9	24
53	Changes and driving factors of compound agricultural droughts and hot events in eastern China. Agricultural Water Management, 2022, 263, 107485.	5.6	24
54	Joint modeling of precipitation and temperature under influences of El Niño Southern Oscillation for compound event evaluation and prediction. Atmospheric Research, 2020, 245, 105090.	4.1	23

Ζενςснао Ηαο

#	Article	IF	CITATIONS
55	Changes in climate-crop yield relationships affect risks of crop yield reduction. Agricultural and Forest Meteorology, 2021, 304-305, 108401.	4.8	23
56	Farmland shift due to climate warming and impacts on temporal-spatial distributions of water resources in a middle-high latitude agricultural watershed. Journal of Hydrology, 2017, 547, 156-167.	5.4	22
57	Rainwater characteristics and interaction with atmospheric particle matter transportation analyzed by remote sensing around Beijing. Science of the Total Environment, 2019, 651, 532-540.	8.0	22
58	A joint extreme index for compound droughts and hot extremes. Theoretical and Applied Climatology, 2020, 142, 321-328.	2.8	22
59	Response of vegetation to El Niño-Southern Oscillation (ENSO) via compound dry and hot events in southern Africa. Global and Planetary Change, 2020, 195, 103358.	3.5	22
60	Population exposure to compound dry and hot events in China under 1.5 and 2°C global warming. International Journal of Climatology, 2021, 41, 5766-5775.	3.5	22
61	Compound events and associated impacts in China. IScience, 2022, 25, 104689.	4.1	22
62	Entropy-based parameter estimation for extended Burr XII distribution. Stochastic Environmental Research and Risk Assessment, 2009, 23, 1113-1122.	4.0	21
63	Toward a categorical drought prediction system based on U.S. Drought Monitor (USDM) and climate forecast. Journal of Hydrology, 2017, 551, 300-305.	5.4	21
64	Modified control strategies for critical source area of nitrogen (CSAN) in a typical freeze-thaw watershed. Journal of Hydrology, 2017, 551, 518-531.	5.4	20
65	A multi-index evaluation of changes in compound dry and hot events of global maize areas. Journal of Hydrology, 2021, 602, 126728.	5.4	20
66	Watershed water circle dynamics during long term farmland conversion in freeze-thawing area. Journal of Hydrology, 2015, 523, 555-562.	5.4	18
67	Probabilistic drought characterization in the categorical form using ordinal regression. Journal of Hydrology, 2016, 535, 331-339.	5.4	16
68	Farmland–atmosphere feedbacks amplify decreases in diffuse nitrogen pollution in a freeze-thaw agricultural area under climate warming conditions. Science of the Total Environment, 2017, 579, 484-494.	8.0	14
69	Changes in the drought condition over northern East Asia and the connections with extreme temperature and precipitation indices. Global and Planetary Change, 2021, 207, 103645.	3.5	14
70	Quantitative contribution of ENSO to precipitation-temperature dependence and associated compound dry and hot events. Atmospheric Research, 2021, 260, 105695.	4.1	12
71	Anthropogenic influence on compound dry and hot events in China based on Coupled Model Intercomparison Project Phase 6 models. International Journal of Climatology, 2022, 42, 4379-4390.	3.5	12
72	Anthropogenically forced increases in compound dry and hot events at the global and continental scales. Environmental Research Letters, 2022, 17, 024018.	5.2	12

Ζενσαμάο Ηλο

#	Article	IF	CITATIONS
73	SWAT-N2O coupler: An integration tool for soil N2O emission modeling. Environmental Modelling and Software, 2019, 115, 86-97.	4.5	11
74	Systematic assessment of the development and recovery characteristics of hydrological drought in a semi-arid area. Science of the Total Environment, 2022, 836, 155472.	8.0	11
75	GDBC: A tool for generating global-scale distributed basin morphometry. Environmental Modelling and Software, 2016, 83, 212-223.	4.5	10
76	Climate change impacts on concurrences of hydrological droughts and high temperature extremes in a semi-arid river basin of China. Journal of Arid Environments, 2022, 202, 104768.	2.4	10
77	Categorical prediction of compound dry and hot events in northeast China based on large-scale climate signals. Journal of Hydrology, 2021, 602, 126729.	5.4	7
78	Comparisons of changes in compound dry and hot events in China based on different drought indicators. International Journal of Climatology, 2022, 42, 8133-8145.	3.5	5
79	Periodic decadal swings in dry/wet conditions over Central Asia. Environmental Research Letters, 2022, 17, 054050.	5.2	2
80	Satellite Remote Sensing Drought Monitoring and Predictions over the Globe. , 2016, , 259-296.		1