
Yan Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1276059/publications.pdf Version: 2024-02-01

VANULANIC

#	Article	IF	CITATIONS
1	Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nature Energy, 2017, 2, .	39.5	491
2	Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. Journal of Materials Chemistry A, 2018, 6, 9604-9612.	10.3	437
3	Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nature Energy, 2019, 4, 585-593.	39.5	327
4	A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nature Energy, 2020, 5, 596-604.	39.5	274
5	Enhancing Optical, Electronic, Crystalline, and Morphological Properties of Cesium Lead Halide by Mn Substitution forÂHigh‣tability Allâ€Inorganic Perovskite Solar Cells withÂCarbon Electrodes. Advanced Energy Materials, 2018, 8, 1800504.	19.5	272
6	Chemical vapor deposition grown formamidinium perovskite solar modules with high steady state power and thermal stability. Journal of Materials Chemistry A, 2016, 4, 13125-13132.	10.3	169
7	Highly Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the Perovskite/Carbon Electrode Interface. Advanced Materials, 2019, 31, e1804284.	21.0	161
8	Combination of Hybrid CVD and Cation Exchange for Upscaling Cs‣ubstituted Mixed Cation Perovskite Solar Cells with High Efficiency and Stability. Advanced Functional Materials, 2018, 28, 1703835.	14.9	158
9	Post-annealing of MAPbI ₃ perovskite films with methylamine for efficient perovskite solar cells. Materials Horizons, 2016, 3, 548-555.	12.2	141
10	Improved Efficiency and Stability of Perovskite Solar Cells Induced by CO Functionalized Hydrophobic Ammoniumâ€Based Additives. Advanced Materials, 2018, 30, 1703670.	21.0	132
11	Hierarchical Nanowire Arrays as Three-Dimensional Fractal Nanobiointerfaces for High Efficient Capture of Cancer Cells. Nano Letters, 2016, 16, 766-772.	9.1	122
12	ITO@Cu ₂ S Tunnel Junction Nanowire Arrays as Efficient Counter Electrode for Quantum-Dot-Sensitized Solar Cells. Nano Letters, 2014, 14, 365-372.	9.1	118
13	Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO ₂ Electron Transport Layer. Advanced Functional Materials, 2019, 29, 1806779.	14.9	118
14	Methylammonium Lead Bromide Perovskite Light-Emitting Diodes by Chemical Vapor Deposition. Journal of Physical Chemistry Letters, 2017, 8, 3193-3198.	4.6	113
15	Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm ² approaching 10% efficiency. Journal of Materials Chemistry A, 2019, 7, 6920-6929.	10.3	112
16	Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules. Nature Communications, 2018, 9, 3880.	12.8	109
17	Physical vapor deposition of amorphous MoS ₂ nanosheet arrays on carbon cloth for highly reproducible large-area electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 19277-19281.	10.3	97
18	Boosting the Open Circuit Voltage and Fill Factor of QDSSCs Using Hierarchically Assembled ITO@Cu ₂ S Nanowire Array Counter Electrodes. Nano Letters, 2015, 15, 3088-3095.	9.1	86

Yan Jiang

#	Article	IF	CITATIONS
19	In situ nitrogen-doped nanoporous carbon nanocables as an efficient metal-free catalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 10154.	10.3	73
20	Mitigation of Vacuum and Illumination-Induced Degradation in Perovskite Solar Cells by Structure Engineering. Joule, 2020, 4, 1087-1103.	24.0	69
21	Engineering Interface Structure to Improve Efficiency and Stability of Organometal Halide Perovskite Solar Cells. Journal of Physical Chemistry B, 2018, 122, 511-520.	2.6	68
22	Negligibleâ€Pbâ€Waste and Upscalable Perovskite Deposition Technology for Highâ€Operationalâ€Stability Perovskite Solar Modules. Advanced Energy Materials, 2019, 9, 1803047.	19.5	68
23	Nearâ€Infraredâ€Transparent Perovskite Solar Cells and Perovskiteâ€Based Tandem Photovoltaics. Small Methods, 2020, 4, 2000395.	8.6	63
24	Electrical Loss Management by Molecularly Manipulating Dopantâ€free Poly(3â€hexylthiophene) towards 16.93 % CsPbl ₂ Br Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 16388-16393.	13.8	57
25	High-Mobility In ₂ O ₃ :H Electrodes for Four-Terminal Perovskite/CuInSe ₂ Tandem Solar Cells. ACS Nano, 2020, 14, 7502-7512.	14.6	54
26	Application of Methylamine Gas in Fabricating Organic–Inorganic Hybrid Perovskite Solar Cells. Energy Technology, 2017, 5, 1750-1761.	3.8	46
27	Perovskite solar cells by vapor deposition based and assisted methods. Applied Physics Reviews, 2022, 9,	11.3	33
28	Benchmarking Chemical Stability of Arbitrarily Mixed 3D Hybrid Halide Perovskites for Solar Cell Applications. Small Methods, 2018, 2, 1800242.	8.6	26
29	Engineering the Interfaces of ITO@Cu ₂ S Nanowire Arrays toward Efficient and Stable Counter Electrodes for Quantum-Dot-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 15448-15455.	8.0	24
30	Revealing the perovskite formation kinetics during chemical vapour deposition. Journal of Materials Chemistry A, 2020, 8, 21973-21982.	10.3	24
31	Engineering inorganic lead halide perovskite deposition toward solar cells with efficiency approaching 20%. Aggregate, 2021, 2, 66-83.	9.9	24
32	The influence of secondary solvents on the morphology of a spiro-MeOTAD hole transport layer for lead halide perovskite solar cells. Journal Physics D: Applied Physics, 2018, 51, 294001.	2.8	23
33	Metal halide perovskite solar cells by modified chemical vapor deposition. Journal of Materials Chemistry A, 2021, 9, 22759-22780.	10.3	22
34	Regulating the crystalline phase of intermediate films enables FA _{1â^'<i>x</i>} MA _{<i>x</i>} PbI ₃ perovskite solar cells with efficiency over 22%. Journal of Materials Chemistry A, 2021, 9, 24064-24070.	10.3	20
35	Hole transporting materials in inorganic CsPbI3â^'Br solar cells: Fundamentals, criteria and opportunities. Materials Today, 2022, 52, 250-268.	14.2	20
36	Electrical Loss Management by Molecularly Manipulating Dopantâ€free Poly(3â€hexylthiophene) towards 16.93 % CsPbl ₂ Br Solar Cells. Angewandte Chemie, 2021, 133, 16524-16529.	2.0	18

Yan Jiang

0

#	Article	IF	CITATIONS
37	Highly Boosted Microbial Extracellular Electron Transfer by Semiconductor Nanowire Array with Suitable Energy Level. Advanced Functional Materials, 2018, 28, 1707408.	14.9	17
38	Metal halide perovskite-based flexible tandem solar cells: next-generation flexible photovoltaic technology. Materials Chemistry Frontiers, 2021, 5, 4833-4850.	5.9	15
39	Strain relaxation and domain enlargement <i>via</i> phase transition towards efficient CsPbI ₂ Br solar cells. Journal of Materials Chemistry A, 2022, 10, 3513-3521.	10.3	11
	Large & EAres Derouchite Solar Medules: Combination of Hubrid CVD and Cation Evolution for Unscaling		

Largeâ€Area Perovskite Solar Modules: Combination of Hybrid CVD and Cation Exchange for Upscaling Csâ€Substituted Mixed Cation Perovskite Solar Cells with High Efficiency and Stability (Adv. Funct.) Tj ETQq0 0 0 rgBJ9/Overlock 10 Tf 5

41	Carbon-free Cu2ZnSn(S,Se)4 film prepared via a non-hydrazine route. Science China Chemistry, 2014, 57, 1552-1558.	8.2	3	
				_

42 Up-Scaling of Organic-Inorganic Hybrid Perovskite Solar Cells and Modules. , 0, , .