Richard N Zare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/127523/publications.pdf

Version: 2024-02-01

407 papers

23,119 citations

79 h-index

6606

128 g-index

444 all docs

444
docs citations

444 times ranked 16433 citing authors

#	Article	IF	CITATIONS
1	Big cohort metabolomic profiling of serum for oral squamous cell carcinoma screening and diagnosis. Natural Sciences, 2022, 2, .	1.0	8
2	Microdroplets can act as electrochemical cells. Journal of Chemical Physics, 2022, 156, 054705.	1.2	22
3	Thermal and Catalytic Decomposition of 2-Hydroxyethylhydrazine and 2-Hydroxyethylhydrazinium Nitrate Ionic Liquid. Journal of Physical Chemistry A, 2022, 126, 373-394.	1.1	4
4	SU086, an inhibitor of HSP90, impairs glycolysis and represents a treatment strategy for advanced prostate cancer. Cell Reports Medicine, 2022, 3, 100502.	3.3	18
5	Cell-Based Ambient Venturi Autosampling and Matrix-Assisted Laser Desorption Ionization Mass Spectrometric Imaging of Secretory Products. Analytical Chemistry, 2022, 94, 3456-3466.	3.2	1
6	Optimizing Coaxial Sonic Spray Geometry for Generating Water Microdroplets. Analytical Chemistry, 2022, 94, 3762-3766.	3.2	4
7	Quantitative detection of hydrogen peroxide in rain, air, exhaled breath, and biological fluids by NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	27
8	Azapodophyllotoxin Causes Lymphoma and Kidney Cancer Regression by Disrupting Tubulin and Monoglycerols. ACS Medicinal Chemistry Letters, 2022, 13, 615-622.	1.3	0
9	Potassium Trimethylsilanolate-Promoted, Anhydrous Suzuki–Miyaura Cross-Coupling Reaction Proceeds via the "Boronate Mechanism― Evidence for the Alternative Fork in the Trail. Journal of the American Chemical Society, 2022, 144, 4345-4364.	6.6	20
10	Sprayed water microdroplets containing dissolved pyridine spontaneously generate pyridyl anions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200991119.	3.3	53
11	SDHB knockout and succinate accumulation are insufficient for tumorigenesis but dual SDHB/NF1 loss yields SDHx-like pheochromocytomas. Cell Reports, 2022, 38, 110453.	2.9	16
12	Cooperative catalysis by a single-atom enzyme-metal complex. Nature Communications, 2022, 13, 2189.	5.8	26
13	Capturing Reactive Carbanions by Microdroplets. Journal of the American Chemical Society, 2022, 144, 7573-7577.	6.6	13
14	Sprayed Water Microdroplets Are Able to Generate Hydrogen Peroxide Spontaneously. Journal of the American Chemical Society, 2022, 144, 7606-7609.	6.6	69
15	Insights into electrochemiluminescence dynamics by synchronizing real-time electrical, luminescence, and mass spectrometric measurements. Chemical Science, 2022, 13, 6244-6253.	3.7	9
16	The perils of machine learning in designing new chemicals and materials. Nature Machine Intelligence, 2022, 4, 314-315.	8.3	5
17	Anisotropic dynamics of resonant scattering between a pair of cold aligned diatoms. Nature Chemistry, 2022, 14, 658-663.	6.6	11
18	Investigation of Tryptic Protein Digestion in Microdroplets and in Bulk Solution. Journal of the American Society for Mass Spectrometry, 2022, 33, 1238-1249.	1.2	14

#	Article	IF	CITATIONS
19	Capture of Hydroxyl Radicals by Hydronium Cations in Water Microdroplets. Angewandte Chemie, 2022, 134, .	1.6	8
20	Laser Ablation Electrospray Ionization Achieves 5 \hat{l} /4m Resolution Using a Microlensed Fiber. Analytical Chemistry, 2022, 94, 10278-10282.	3.2	10
21	Coulometryâ€assisted quantitation in spray ionization mass spectrometry. Journal of Mass Spectrometry, 2021, 56, e4628.	0.7	9
22	Electrocatalytic redox neutral $[3 + 2]$ annulation of $\langle i \rangle N \langle i \rangle$ -cyclopropylanilines and alkenes. Chemical Science, 2021, 12, 969-975.	3.7	22
23	Location of carbon–carbon double bonds in unsaturated lipids using microdroplet mass spectrometry. Analyst, The, 2021, 146, 2550-2558.	1.7	10
24	Peptide and protein assays using customizable bio-affinity arrays combined with ambient ionization mass spectrometry. Chemical Science, 2021, 12, 10810-10816.	3.7	5
25	Microdroplet Ultrafast Reactions Speed Antibody Characterization. Analytical Chemistry, 2021, 93, 3997-4005.	3.2	32
26	Shape resonance determined from angular distribution in D2 ($\langle i\rangle v\langle li\rangle = 2$, $\langle i\rangle j\langle li\rangle = 2$) + He → D2 ($\langle i\rangle v\langle li\rangle = 2$, $\langle i\rangle j\langle li\rangle = 0$) + He cold scattering. Journal of Chemical Physics, 2021, 154, 104309.	1.2	15
27	Accelerated Oxidation of Organic Sulfides by Microdroplet Chemistry. Journal of Organic Chemistry, 2021, 86, 5011-5015.	1.7	11
28	Adipocytes Provide Fatty Acids to Acute Lymphoblastic Leukemia Cells. Frontiers in Oncology, 2021, 11, 665763.	1.3	29
29	A Bi-Axial Quantum State That Controls Molecular Collisions Like a Double-Slit Interferometer. Frontiers in Physics, 2021, 9, .	1.0	4
30	MassExplorer: a computational tool for analyzing desorption electrospray ionization mass spectrometry data. Bioinformatics, 2021, 37, 3688-3690.	1.8	4
31	Effect of relative humidity on hydrogen peroxide production in water droplets. QRB Discovery, 2021, 2, .	0.6	12
32	Hydrogen–Deuterium Exchange Desorption Electrospray Ionization Mass Spectrometry Visualizes an Acidic Tumor Microenvironment. Analytical Chemistry, 2021, 93, 10411-10417.	3.2	11
33	In situ DESI-MSI lipidomic profiles of mucosal margin of oral squamous cell carcinoma. EBioMedicine, 2021, 70, 103529.	2.7	16
34	Polymer substrate with surface solvent reservoir for polymer-spray mass spectrometric analysis of hydrophilic drugs. Talanta Open, 2021, 4, 100048.	1.7	4
35	Ultrafast enzymatic digestion of deoxyribonucleic acid in aqueous microdroplets for sequence discrimination and identification. QRB Discovery, 2021, 2, e4.	0.6	5
36	Distinguishing between Isobaric Ions Using Microdroplet Hydrogen–Deuterium Exchange Mass Spectrometry. Metabolites, 2021, 11, 728.	1.3	9

#	Article	IF	CITATIONS
37	Effect of Relative Humidity on Hydrogen Peroxide Production in Water Droplets – CORRIGENDUM. QRB Discovery, 2021, 2, .	0.6	O
38	Quantum mechanical double slit for molecular scattering. Science, 2021, 374, 960-964.	6.0	27
39	Effect of Relative Humidity in Air on the Transmission of Respiratory Viruses. Molecular Frontiers Journal, 2021, 05, 5-16.	0.9	5
40	Introducing Nafion for In Situ Desalting and Biofluid Profiling in Spray Mass Spectrometry. Frontiers in Chemistry, 2021, 9, 807244.	1.8	8
41	Nanoparticles decorated with granulocyte-colony stimulating factor for targeting myeloid cells. Nanoscale, 2020, 12, 2752-2763.	2.8	6
42	Identification of diagnostic metabolic signatures in clear cell renal cell carcinoma using mass spectrometry imaging. International Journal of Cancer, 2020, 147, 256-265.	2.3	38
43	Chemoselective Nâ€Alkylation of Indoles in Aqueous Microdroplets. Angewandte Chemie, 2020, 132, 3093-3096.	1.6	28
44	Chemoselective Nâ€Alkylation of Indoles in Aqueous Microdroplets. Angewandte Chemie - International Edition, 2020, 59, 3069-3072.	7.2	50
45	Spatial localization of charged molecules by salt ions in oil-confined water microdroplets. Science Advances, 2020, 6, .	4.7	29
46	Restricted intramolecular rotation of fluorescent molecular rotors at the periphery of aqueous microdroplets in oil. Scientific Reports, 2020, 10, 16859.	1.6	22
47	Condensing water vapor to droplets generates hydrogen peroxide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30934-30941.	3.3	104
48	Mechanistic Study of Isotactic Poly(propylene oxide) Synthesis using a Tethered Bimetallic Chromium Salen Catalyst. ACS Catalysis, 2020, 10, 8960-8967.	5.5	13
49	Strong Concentration Enhancement of Molecules at the Interface of Aqueous Microdroplets. Journal of Physical Chemistry B, 2020, 124, 9938-9944.	1,2	35
50	Cell-Type-Specific Metabolic Profiling Achieved by Combining Desorption Electrospray Ionization Mass Spectrometry Imaging and Immunofluorescence Staining. Analytical Chemistry, 2020, 92, 13281-13289.	3.2	31
51	Spraying Small Water Droplets Acts as a Bacteriocide. QRB Discovery, 2020, 1, .	0.6	25
52	Effects of Weak Electrolytes on Electric Double Layer Ion Distributions. Journal of Physical Chemistry Letters, 2020, 11, 8302-8306.	2.1	14
53	Strong Electric Field Observed at the Interface of Aqueous Microdroplets. Journal of Physical Chemistry Letters, 2020, 11, 7423-7428.	2.1	177
54	Simple model for the electric field and spatial distribution of ions in a microdroplet. Journal of Chemical Physics, 2020, 152, 184702.	1.2	98

#	Article	IF	CITATIONS
55	Reaction of chloroauric acid with histidine in microdroplets yields a catalytic Au–(His) ₂ complex. Chemical Science, 2020, 11, 2558-2565.	3.7	25
56	Oral squamous cell carcinoma diagnosed from saliva metabolic profiling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16167-16173.	3.3	98
57	Strong, Nonresonant Radiation Enhances <i>Cis</i> i> \hat{l} i> \hat{a} e" <i>Trans</i> Photoisomerization of Stilbene in Solution. Journal of Physical Chemistry A, 2020, 124, 5999-6008.	1.1	7
58	Metabolite therapy guided by liquid biopsy proteomics delays retinal neurodegeneration. EBioMedicine, 2020, 52, 102636.	2.7	30
59	Ultrafast enzymatic digestion of proteins by microdroplet mass spectrometry. Nature Communications, 2020, 11, 1049.	5.8	74
60	Teflon Spray Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 234-239.	1.2	17
61	Highly parallel and efficient single cell mRNA sequencing with paired picoliter chambers. Nature Communications, 2020, 11, 2118. Harnessing the Power of Adiabatic Curve Crossing to Populate the Highly Vibrationally Excited	5.8	50
62	Harnessing the Power of Adiabatic Curve Crossing to Populate the Highly Vibrationally Excited <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mrow><mml:mrow>2</mml:mrow><td>b><td>nrow></td></td></mml:mrow></mml:mrow></mml:mrow></mml:math>	b> <td>nrow></td>	nrow>

#	Article	IF	CITATIONS
73	Photon catalysis of deuterium iodide photodissociation. Physical Chemistry Chemical Physics, 2019, 21, 14195-14204.	1.3	9
74	Micrometer-Sized Water Droplets Induce Spontaneous Reduction. Journal of the American Chemical Society, 2019, 141, 10585-10589.	6.6	205
75	Stark-induced adiabatic Raman passage examined through the preparation of D2 (<i>v</i> = 2, <i>j</i> =) Tj ETQq	1 1 0.784 1.2	314 rgBT 12
76	Highly active enzyme–metal nanohybrids synthesized in protein–polymer conjugates. Nature Catalysis, 2019, 2, 718-725.	16.1	115
77	1,4-Benzoquinone antimicrobial agents against <i>Staphylococcus aureus</i> and <i>Mycobacterium tuberculosis</i> derived from scorpion venom. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12642-12647.	3.3	34
78	HD (⟨i⟩v⟨ i⟩ = 1, ⟨i⟩j⟨ i⟩ = 2, ⟨i⟩m⟨ i⟩) orientation controls HD–He rotationally inelastic scattering near 1 K. Journal of Chemical Physics, 2019, 150, 174301.	1.2	30
79	The CM carbonaceous chondrite regolith Diepenveen. Meteoritics and Planetary Science, 2019, 54, 1431-1461.	0.7	9
80	Proof of concept for identifying cystic fibrosis from perspiration samples. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24408-24412.	3.3	14
81	Aqueous microdroplets containing only ketones or aldehydes undergo Dakin and Baeyer–Villiger reactions. Chemical Science, 2019, 10, 10974-10978.	3.7	81
82	Mechanistic Study of Ruthenium-Catalyzed C–H Hydroxylation Reveals an Unexpected Pathway for Catalyst Arrest. Journal of the American Chemical Society, 2019, 141, 972-980.	6.6	20
83	Nonresonant Photons Catalyze Photodissociation of Phenol. Journal of the American Chemical Society, 2019, 141, 1067-1073.	6.6	15
84	Selective Synthesis in Microdroplets of 2â€Phenylâ€2,3â€dihydrophthalazineâ€1,4â€dione from Phenyl Hydrazine with Phthalic Anhydride or Phthalic Acid. Chemistry - A European Journal, 2019, 25, 1466-1471.	1.7	25
85	Making Materials That Hate Water to Love Water: The Transformative Power of Chemistry. , 2019, , 269-281.		O
86	Nanomaterial Preparation by Extrusion through Nanoporous Membranes. Small, 2018, 14, e1703493.	5.2	69
87	Quantum interference in chemical reactions. Physics Today, 2018, 71, 70-71.	0.3	4
88	Spontaneous formation of gold nanostructures in aqueous microdroplets. Nature Communications, 2018, 9, 1562.	5.8	124
89	Mechanistic Analysis of the C–H Amination Reaction of Menthol by CuBr ₂ and Selectfluor. Journal of Organic Chemistry, 2018, 83, 5681-5687.	1.7	15
90	Cold quantum-controlled rotationally inelastic scattering of HD with H2 and D2 reveals collisional partner reorientation. Nature Chemistry, 2018, 10, 561-567.	6.6	74

#	Article	IF	CITATIONS
91	Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 36-40.	3.3	98
92	Microdroplets Accelerate Ring Opening of Epoxides. Journal of the American Society for Mass Spectrometry, 2018, 29, 1036-1043.	1.2	38
93	Site-selective bromination of sp ³ C–H bonds. Chemical Science, 2018, 9, 100-104.	3.7	61
94	Conductive Polymer Spray Ionization Mass Spectrometry for Biofluid Analysis. Analytical Chemistry, 2018, 90, 12878-12885.	3.2	39
95	Combining Desorption Electrospray Ionization Mass Spectrometry Imaging and Machine Learning for Molecular Recognition of Myocardial Infarction. Analytical Chemistry, 2018, 90, 12198-12206.	3.2	22
96	Fluorescence Polarization Anisotropy in Microdroplets. Journal of Physical Chemistry Letters, 2018, 9, 2928-2932.	2.1	72
97	Electrically controlled drug release using pH-sensitive polymer films. Nanoscale, 2018, 10, 10087-10093.	2.8	42
98	Preparative microdroplet synthesis of carboxylic acids from aerobic oxidation of aldehydes. Chemical Science, 2018, 9, 5207-5211.	3.7	55
99	Stark-Induced Adiabatic Passage Processes to Selectively Prepare Vibrationally Excited Single and Superposition of Quantum States. , 2018, , 1-46.		9
100	Supersonic beams of mixed gases: A method for studying cold collisions. Chemical Physics, 2018, 514, 150-153.	0.9	15
101	Enhancement of reaction rate in small-sized droplets: A combined analytical and simulation study. Journal of Chemical Physics, 2018, 148, 244704.	1.2	47
102	Real-time mass-spectrometric screening of droplet-scale electrochemical reactions. Analyst, The, 2018, 143, 4247-4250.	1.7	9
103	An Alkaloid from Scorpion Venom: Chemical Structure and Synthesis. Journal of Natural Products, 2018, 81, 1899-1904.	1.5	17
104	Ultra-low voltage triggered release of an anti-cancer drug from polypyrrole nanoparticles. Nanoscale, 2018, 10, 9773-9779.	2.8	23
105	In Situ Mass Spectrometric Screening and Studying of the Fleeting Chain Propagation of Aniline. Analytical Chemistry, 2018, 90, 7154-7157.	3.2	25
106	Distinguishing malignant from benign microscopic skin lesions using desorption electrospray ionization mass spectrometry imaging. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6347-6352.	3.3	71
107	Twoâ€Phase Reactions in Microdroplets without the Use of Phaseâ€Transfer Catalysts. Angewandte Chemie - International Edition, 2017, 56, 3562-3565.	7.2	82
108	Twoâ€Phase Reactions in Microdroplets without the Use of Phaseâ€Transfer Catalysts. Angewandte Chemie, 2017, 129, 3616-3619.	1.6	24

#	Article	IF	CITATIONS
109	Two New Devices for Identifying Electrochemical Reaction Intermediates with Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2017, 89, 3191-3198.	3.2	21
110	Microdroplet fusion mass spectrometry: accelerated kinetics of acid-induced chlorophyll demetallation. Quarterly Reviews of Biophysics, 2017, 50, e2.	2.4	36
111	Potassium <i>tert</i> -Butoxide-Catalyzed Dehydrogenative Câ€"H Silylation of Heteroaromatics: A Combined Experimental and Computational Mechanistic Study. Journal of the American Chemical Society, 2017, 139, 6867-6879.	6.6	160
112	Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4300-4305.	3.3	110
113	Rapid Hydrogen–Deuterium Exchange in Liquid Droplets. Journal of the American Chemical Society, 2017, 139, 6851-6854.	6.6	70
114	Ionic and Neutral Mechanisms for C–H Bond Silylation of Aromatic Heterocycles Catalyzed by Potassium <i>tert</i> -Butoxide. Journal of the American Chemical Society, 2017, 139, 6880-6887.	6.6	111
115	Electrically controlled release of insulin using polypyrrole nanoparticles. Nanoscale, 2017, 9, 143-149.	2.8	67
116	Can all bulk-phase reactions be accelerated in microdroplets?. Analyst, The, 2017, 142, 1399-1402.	1.7	133
117	Diagnosis of prostate cancer by desorption electrospray ionization mass spectrometric imaging of small metabolites and lipids. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3334-3339.	3 . 3	174
118	Personal Information from Latent Fingerprints Using Desorption Electrospray Ionization Mass Spectrometry and Machine Learning. Analytical Chemistry, 2017, 89, 1369-1372.	3.2	75
119	"Onâ€Droplet―Chemistry: The Cycloaddition of Diethyl Azodicarboxylate and Quadricyclane. Angewandte Chemie, 2017, 129, 15279-15283.	1.6	12
120	Formation of Polymeric Nanocubes by Selfâ€Assembly and Crystallization of Dithiolaneâ€Containing Triblock Copolymers. Angewandte Chemie - International Edition, 2017, 56, 16357-16362.	7.2	29
121	"Onâ€Droplet―Chemistry: The Cycloaddition of Diethyl Azodicarboxylate and Quadricyclane. Angewandte Chemie - International Edition, 2017, 56, 15083-15087.	7.2	58
122	Pomeranz–Fritsch Synthesis of Isoquinoline: Gas-Phase Collisional Activation Opens Additional Reaction Pathways. Journal of the American Chemical Society, 2017, 139, 14352-14355.	6.6	15
123	Upgrading Asphaltenes by Oil Droplets Striking a Charged TiO2-Immobilized Paper Surface. Energy & Lamp; Fuels, 2017, 31, 12685-12690.	2.5	4
124	Quantum control of molecular collisions at 1 kelvin. Science, 2017, 358, 356-359.	6.0	121
125	On-demand electrically controlled drug release from resorbable nanocomposite films. Nanoscale, 2017, 9, 16429-16436.	2.8	23
126	Abiotic production of sugar phosphates and uridine ribonucleoside in aqueous microdroplets. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12396-12400.	3.3	166

#	Article	IF	CITATIONS
127	Mechanism of Catalytic Oxidation of Styrenes with Hydrogen Peroxide in the Presence of Cationic Palladium(II) Complexes. Journal of the American Chemical Society, 2017, 139, 12495-12503.	6.6	49
128	Making Materials That Hate Water to Love Water: The Transformative Power of Chemistry. Molecular Frontiers Journal, 2017, 01, 10-15.	0.9	1
129	Polymerâ€spray mass spectrometric detection and quantitation of hydrophilic compounds and some narcotics. Rapid Communications in Mass Spectrometry, 2017, 31, 1651-1658.	0.7	24
130	Mechanistic analysis of a copper-catalyzed Câ€"H oxidative cyclization of carboxylic acids. Chemical Science, 2017, 8, 7003-7008.	3.7	34
131	Nanoaggregates of Diverse Asphaltenes by Mass Spectrometry and Molecular Dynamics. Energy & Energy & Fuels, 2017, 31, 9140-9151.	2.5	63
132	Optimizing Chemical Reactions with Deep Reinforcement Learning. ACS Central Science, 2017, 3, 1337-1344.	5.3	291
133	Formation of Polymeric Nanocubes by Selfâ€Assembly and Crystallization of Dithiolaneâ€Containing Triblock Copolymers. Angewandte Chemie, 2017, 129, 16575-16580.	1.6	7
134	Stark-induced adiabatic Raman ladder for preparing highly vibrationally excited quantum states of molecular hydrogen. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 144005.	0.6	11
135	Scaffold-mediated BMP-2 minicircle DNA delivery accelerated bone repair in a mouse critical-size calvarial defect model. Journal of Biomedical Materials Research - Part A, 2016, 104, 2099-2107.	2.1	23
136	Miniaturized Linear Wire Ion Trap Mass Analyzer. Analytical Chemistry, 2016, 88, 7800-7806.	3.2	29
137	Angular and internal state distributions of H2+ generated by $(2+1)$ resonance enhanced multiphoton ionization of H2 using time-of-flight mass spectrometry. Journal of Chemical Physics, 2016, 144, 214201.	1.2	11
138	Multiple scattering mechanisms causing interference effects in the differential cross sections of H + D2 \hat{a} †' HD($\langle i \rangle v \langle i \rangle \hat{a} \in ^2 = 4$, $\hat{a} \in \% \langle i \rangle j \langle i \rangle \hat{a} \in ^2$) + D at 3.26 eV collision energy. Journal of Chemical Physics, 2016, 1-024308.	4 5, 2	14
139	Wissenschaftliches Publizieren – neue Ideen fýr ein faires System. Angewandte Chemie, 2016, 128, 2652-2653.	1.6	O
140	Better Practices in Scientific Publishing. Angewandte Chemie - International Edition, 2016, 55, 2606-2607.	7.2	1
141	Nanotip Ambient Ionization Mass Spectrometry. Analytical Chemistry, 2016, 88, 5542-5548.	3.2	23
142	Electroresponsive nanoparticles for drug delivery on demand. Nanoscale, 2016, 8, 9310-9317.	2.8	51
143	High-Resolution Live-Cell Imaging and Analysis by Laser Desorption/Ionization Droplet Delivery Mass Spectrometry. Analytical Chemistry, 2016, 88, 5453-5461.	3.2	70
144	Direct Copper(III) Formation from O ₂ and Copper(I) with Histamine Ligation. Journal of the American Chemical Society, 2016, 138, 9986-9995.	6.6	25

#	Article	IF	CITATIONS
145	A Study of Heterogeneous Catalysis by Nanoparticleâ€Embedded Paperâ€6pray Ionization Mass Spectrometry. Angewandte Chemie, 2016, 128, 12999-13003.	1.6	5
146	A Study of Heterogeneous Catalysis by Nanoparticleâ€Embedded Paperâ€Spray Ionization Mass Spectrometry. Angewandte Chemie - International Edition, 2016, 55, 12807-12811.	7.2	47
147	Catalytic Carbonylative Spirolactonization of Hydroxycyclopropanols. Journal of the American Chemical Society, 2016, 138, 10693-10699.	6.6	97
148	Impact of Laboratory-Induced Thermal Maturity on Asphaltene Molecular Structure. Energy & Samp; Fuels, 2016, 30, 7025-7036.	2.5	25
149	An ultrasonically powered implantable device for targeted drug delivery. , 2016, 2016, 541-544.		12
150	Preparation of a selected high vibrational energy level of isolated molecules. Journal of Chemical Physics, 2016, 145, 154203.	1.2	22
151	Fall and rise of a D2O ice cube in liquid H2O. Resonance, 2016, 21, 453-456.	0.2	0
152	Monitoring Enzymatic Reactions in Real Time Using Venturi Easy Ambient Sonic-Spray Ionization Mass Spectrometry. Analytical Chemistry, 2016, 88, 6195-6198.	3.2	17
153	Performance of chemically modified plastic blood collection tubes. Clinical Biochemistry, 2016, 49, 90-99.	0.8	3
154	Going beyond electrospray: mass spectrometric studies of chemical reactions in and on liquids. Chemical Science, 2016, 7, 39-55.	3.7	109
155	Observation of electrochemically generated nitrenium ions by desorption electrospray ionization mass spectrometry. Chemical Science, 2016, 7, 329-332.	3.7	47
156	Pancreatic Cancer Surgical Resection Margins: Molecular Assessment by Mass Spectrometry Imaging. PLoS Medicine, 2016, 13, e1002108.	3.9	79
157	Acceleration of reaction in charged microdroplets. Quarterly Reviews of Biophysics, 2015, 48, 437-444.	2.4	204
158	Detection of the Shortâ€Lived Radical Cation Intermediate in the Electrooxidation of <i>N</i> , <i>N</i> ,ê> li>â€Dimethylaniline by Mass Spectrometry. Angewandte Chemie - International Edition, 2015, 54, 11183-11185.	7.2	83
159	Carl Djerassi (1923-2015). Angewandte Chemie - International Edition, 2015, 54, 5001-5002.	7.2	2
160	Syntheses of Isoquinoline and Substituted Quinolines in Charged Microdroplets. Angewandte Chemie - International Edition, 2015, 54, 14795-14799.	7.2	158
161	Mechanistic analysis of an asymmetric palladium-catalyzed conjugate addition of arylboronic acids to \hat{l}^2 -substituted cyclic enones. Chemical Science, 2015, 6, 1917-1922.	3.7	28
162	Protein Analysis by Ambient Ionization Mass Spectrometry Using Trypsin-Immobilized Organosiloxane Polymer Surfaces. Analytical Chemistry, 2015, 87, 12324-12330.	3.2	12

#	Article	IF	CITATIONS
163	Challenges of metagenomics and single-cell genomics approaches for exploring cyanobacterial diversity. Photosynthesis Research, 2015, 126, 135-146.	1.6	10
164	Laser-Based Mass Spectrometric Assessment of Asphaltene Molecular Weight, Molecular Architecture, and Nanoaggregate Number. Energy & Samp; Fuels, 2015, 29, 2833-2842.	2.5	102
165	Quantum interference between H + D2 quasiclassical reaction mechanisms. Nature Chemistry, 2015, 7, 661-667.	6.6	34
166	Identification of Fleeting Electrochemical Reaction Intermediates Using Desorption Electrospray lonization Mass Spectrometry. Journal of the American Chemical Society, 2015, 137, 7274-7277.	6.6	103
167	Droplet Spray Ionization from a Glass Microscope Slide: Real-Time Monitoring of Ethylene Polymerization. Analytical Chemistry, 2015, 87, 8057-8062.	3.2	56
168	Differential Cross Sections for the H + D ₂ \hat{a}^{*} HD($\langle i\rangle v, \langle i\rangle j$	ⁿ 1.1	18
169	The Role of Abcb5 Alleles in Susceptibility to Haloperidol-Induced Toxicity in Mice and Humans. PLoS Medicine, 2015, 12, e1001782.	3.9	23
170	MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6539-6544.	3.3	211
171	Microdroplet fusion mass spectrometry for fast reaction kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3898-3903.	3.3	197
172	Mechanistic Insights into Two-Phase Radical C–H Arylations. ACS Central Science, 2015, 1, 456-462.	5.3	29
173	Imaging of Proteins in Tissue Samples Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2015, 87, 11171-11175.	3.2	101
174	Celecoxib Nanoparticles for Therapeutic Angiogenesis. ACS Nano, 2015, 9, 9416-9426.	7.3	44
175	Catalytic Role of Multinuclear Palladium–Oxygen Intermediates in Aerobic Oxidation Followed by Hydrogen Peroxide Disproportionation. Journal of the American Chemical Society, 2015, 137, 13632-13646.	6.6	49
176	Is the simplest chemical reaction really so simple?. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15-20.	3.3	82
177	LprG-Mediated Surface Expression of Lipoarabinomannan Is Essential for Virulence of Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004376.	2.1	82
178	Trinuclear Pd ₃ O ₂ Intermediate in Aerobic Oxidation Catalysis. Angewandte Chemie, 2014, 126, 5754-5758.	1.6	9
179	Diamondosomes: Submicron Colloidosomes with Nanodiamond Shells. Particle and Particle Systems Characterization, 2014, 31, 1067-1071.	1.2	16
180	Molecular assessment of surgical-resection margins of gastric cancer by mass-spectrometric imaging. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2436-2441.	3.3	185

#	Article	IF	CITATIONS
181	Trinuclear Pd ₃ O ₂ Intermediate in Aerobic Oxidation Catalysis. Angewandte Chemie - International Edition, 2014, 53, 5648-5652.	7.2	37
182	Laser-Based Mass Spectrometric Determination of Aggregation Numbers for Petroleum- and Coal-Derived Asphaltenes. Energy & Energy & 2014, 28, 475-482.	2.5	81
183	Speciation and decomposition pathways of ruthenium catalysts used for selective C–H hydroxylation. Chemical Science, 2014, 5, 3309-3314.	3.7	20
184	One-Pot Synthesis of Protein-Embedded Metal–Organic Frameworks with Enhanced Biological Activities. Nano Letters, 2014, 14, 5761-5765.	4.5	754
185	Constant Asphaltene Molecular and Nanoaggregate Mass in a Gravitationally Segregated Reservoir. Energy & Energy	2.5	46
186	Alteration of the lipid profile in lymphomas induced by MYC overexpression. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10450-10455.	3.3	118
187	Why some pool shots are more difficult than others. Resonance, 2014, 19, 116-122.	0.2	4
188	Fall, recovery, and characterization of the Novato L6 chondrite breccia. Meteoritics and Planetary Science, 2014, 49, 1388-1425.	0.7	59
189	Modes of Activation of Organometallic Iridium Complexes for Catalytic Water and C–H Oxidation. Inorganic Chemistry, 2014, 53, 423-433.	1.9	57
190	Coherent superposition of M-states in a single rovibrational level of H2 by Stark-induced adiabatic Raman passage. Journal of Chemical Physics, 2014, 140, 074201.	1.2	26
191	Minimization of Fragmentation and Aggregation by Laser Desorption Laser Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2013, 24, 1116-1122.	1.2	53
192	Simultaneous Measurement of Reactive and Inelastic Scattering: Differential Cross Section of the H + HD â†' HD(v′, j′) + H Reaction. Zeitschrift Fur Physikalische Chemie, 2013, 227, .	1.4	8
193	American Universities at Risk. Angewandte Chemie - International Edition, 2013, 52, 112-113.	7.2	2
194	Chemoselective Pd-Catalyzed Oxidation of Polyols: Synthetic Scope and Mechanistic Studies. Journal of the American Chemical Society, 2013, 135, 7593-7602.	6.6	91
195	Electrooxidation of Alcohols Catalyzed by Amino Alcohol Ligated Ruthenium Complexes. Journal of the American Chemical Society, 2013, 135, 14299-14305.	6.6	42
196	The Hydrogen Games and Other Adventures in Chemistry. Annual Review of Physical Chemistry, 2013, 64, 1-19.	4.8	14
197	Optical preparation of H2 rovibrational levels with almost complete population transfer. Journal of Chemical Physics, 2013, 139, 074204.	1.2	35
198	Communication: Transfer of more than half the population to a selected rovibrational state of H2 by Stark-induced adiabatic Raman passage. Journal of Chemical Physics, 2013, 138, 051101.	1.2	18

#	Article	IF	CITATIONS
199	Disagreement between theory and experiment grows with increasing rotational excitation of $HD(\langle i\rangle \vee \langle i\rangle \hat{a} \in ^2, \langle i\rangle i\rangle \langle i\rangle \hat{a} \in ^2 \langle i\rangle)$ product for the H + D2 reaction. Journal of Chemical Physics, 2013, 138, 094310.	1.2	13
200	Transient Ru-methyl formate intermediates generated with bifunctional transfer hydrogenation catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2246-2250.	3.3	62
201	D + C(CH3)4 â†' HD (v ′, j ′) + C(CH3)3CH2: possible concerted flo Molecular Physics, 2012, 110, 1713-1720.	ow of vibra	ition energ
202	Capturing fleeting intermediates in a catalytic C–H amination reaction cycle. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18295-18299.	3.3	93
203	Reaction dynamics: concluding remarks. Faraday Discussions, 2012, 157, 501.	1.6	1
204	Advances in Asphaltene Science and the Yen–Mullins Model. Energy & Samp; Fuels, 2012, 26, 3986-4003.	2.5	789
205	Drug Release from Electric-Field-Responsive Nanoparticles. ACS Nano, 2012, 6, 227-233.	7.3	434
206	My Life with LIF: A Personal Account of Developing Laser-Induced Fluorescence. Annual Review of Analytical Chemistry, 2012, 5, 1-14.	2.8	59
207	Seemingly Anomalous Angular Distributions in H + D ₂ Reactive Scattering. Science, 2012, 336, 1687-1690.	6.0	41
208	Surface-imprinted polymers in microfluidic devices. Science China Chemistry, 2012, 55, 469-483.	4.2	43
209	Differential cross sections for H + D $<$ sub $>$ 2 $<$ /sub $>$ → HD(vâ \in ² = 2, jâ \in ² = 0,3,6,9) + D at center-of-mass collision energies of 1.25, 1.61, and 1.97 eV. Physical Chemistry Chemical Physics, 2011, 13, 8175-8179.	1.3	14
210	Evidence for Island Structures as the Dominant Architecture of Asphaltenes. Energy &	2.5	220
211	Glucose-Driven Fuel Cell Constructed from Enzymes and Filter Paper. Journal of Chemical Education, 2011, 88, 1283-1286.	1.1	13
212	Can stimulated Raman pumping cause large population transfers in isolated molecules?. Journal of Chemical Physics, 2011, 135, 184202.	1.2	11
213	Stark-induced adiabatic Raman passage for preparing polarized molecules. Journal of Chemical Physics, 2011, 135, 024201.	1.2	45
214	Why Help a Growing Scientific Giant?. Angewandte Chemie, 2011, 123, 8352-8353.	1.6	0
215	Detecting Reaction Intermediates in Liquids on the Millisecond Time Scale Using Desorption Electrospray Ionization. Angewandte Chemie - International Edition, 2011, 50, 250-254.	7.2	116
216	Microfluidic Platforms for Single-Cell Analysis. Annual Review of Biomedical Engineering, 2010, 12, 187-201.	5.7	287

#	Article	IF	CITATIONS
217	Polycyclic aromatic hydrocarbons in asteroid 2008 TC ₃ : Dispersion of organic compounds inside asteroids. Meteoritics and Planetary Science, 2010, 45, 1710-1717.	0.7	22
218	Search for Brâ^— production in the D+DBr reaction. Journal of Chemical Physics, 2010, 132, 084301.	1.2	15
219	Comparing Laser Desorption/Laser Ionization Mass Spectra of Asphaltenes and Model Compounds. Energy &	2.5	60
220	Assessment and control of organic and other contaminants associated with the Stardust sample return from comet 81P/Wild 2. Meteoritics and Planetary Science, 2010, 45, 406-433.	0.7	55
221	Desorption Electrospray Ionization: Achieving Rapid Sampling Rates. Analytical Chemistry, 2009, 81, 9035-9040.	3.2	16
222	No More Pencils, No More Books. Journal of Chemical Education, 2009, 86, 142.	1.1	2
223	Charting a Course for Chemistry Education. Journal of Chemical Education, 2009, 86, 145.	1.1	0
224	High-precision optical measurements of ¹³ C/ ¹² C isotope ratios in organic compounds at natural abundance. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10928-10932.	3.3	54
225	Asphaltene Molecular-Mass Distribution Determined by Two-Step Laser Mass Spectrometry. Energy & Laser, 2009, 23, 1162-1168.	2.5	125
226	Questions to Chemical Educators from the Chemistry Community. ACS Symposium Series, 2008, , 11-18. Preparation of highly polarized nuclei: Observation and control of time-dependent polarization	0.5	1
227	transier from		

#	Article	IF	CITATIONS
235	Design and characterization of a late-mixing pulsed nozzle. Review of Scientific Instruments, 2004, 75, 556-558.	0.6	8
236	Application of Ion Chromatography to the Investigation of Real-World Samples. Journal of Chemical Education, 2004, 81, 1299.	1.1	6
237	Probing Excited Electronic States Using Vibrationally Mediated Photolysis: Application to Hydrogen lodideâ€. Journal of Physical Chemistry A, 2004, 108, 7806-7813.	1.1	21
238	Hadamard Transform Time-of-Flight Mass Spectrometry: More Signal, More of the Time. Angewandte Chemie - International Edition, 2003, 42, 30-35.	7.2	46
239	Adsorption of Crystal Violet to the Silicaâ^'Water Interface Monitored by Evanescent Wave Cavity Ring-Down Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 7070-7075.	1.2	76
240	Teaching Effective Communication in a Writing-Intensive Analytical Chemistry Course. Journal of Chemical Education, 2003, 80, 904.	1.1	47
241	Photodissociation of O2 via the Herzberg continuum: Measurements of O-atom alignment and orientation. Journal of Chemical Physics, 2003, 118, 10566-10574.	1.2	25
242	Measurement of the cross section for H+D2→HD(v′=3,j′=0)+D as a function of angle and energy. Journal of Chemical Physics, 2003, 119, 4662-4670.	1.2	23
243	Visualizing Chemistry. Journal of Chemical Education, 2002, 79, 1290.	1.1	24
244	Irradiation of Dye-Doped Microspheres with a Strongly Focused Laser Beam Results in Alignment upon Optical Trapping. Nano Letters, 2002, 2, 207-210.	4.5	3
245	State-resolved differential and integral cross sections for the reaction H+D2→HD(v′=3,j′=0–7)+D at 1.64 eV collision energy. Journal of Chemical Physics, 2002, 116, 6634-6639.	1.2	39
246	Channel-specific angular distributions of HCl and CH3 products from the reaction of atomic chlorine with stretch-excited methane. Journal of Chemical Physics, 2002, 117, 3232-3242.	1.2	54
247	Capillary electrophoresis separation and native laser-induced fluorescence detection of metallotexaphyrins. Journal of Separation Science, 2002, 25, 819-824.	1.3	7
248	Observation and interpretation of a time-delayed mechanism in the hydrogen exchange reaction. Nature, 2002, 416, 67-70.	13.7	187
249	Novel method for the production of finely spaced Bradbury–Nielson gates. Review of Scientific Instruments, 2001, 72, 4354-4357.	0.6	35
250	Comparison of near-threshold reactivity of ground-state and spin-orbit excited chlorine atoms with methane. Journal of Chemical Physics, 2001, 115, 179-183.	1.2	36
251	Microprobe laser mass spectrometry studies of polycyclic aromatic hydrocarbon distributions on harbor sediments and coals. Israel Journal of Chemistry, 2001, 41, 105-110.	1.0	5
252	Strategy for On-Line Preconcentration in Chromatographic Separations. Analytical Chemistry, 2001, 73, 5539-5543.	3.2	49

#	Article	IF	CITATIONS
253	Distribution of Rovibrational Product States for the "Prompt―Reaction H + D2(v= 0,j= 0â^'4) â†' HD(vâ€`	=) Tj <u>F.</u> TQq1 1	. 0.784314
254	N2 Product Internal-State Distributions for the Steady-State Reactions of NO with H2 and NH3 on the Pt(100) Surface. Journal of Physical Chemistry B, 2001, 105, 8725-8728.	1.2	9
255	Photopolymerized Solâ^'Gel Monoliths for Capillary Electrochromatography. Analytical Chemistry, 2001, 73, 3921-3926.	3.2	127
256	On-Line Preconcentration in Capillary Electrochromatography Using a Porous Monolith Together with Solvent Gradient and Sample Stacking. Analytical Chemistry, 2001, 73, 5557-5563.	3.2	83
257	Comparison of microprobe two-step laser desorption/laser ionization mass spectrometry and gas chromatography/ mass spectrometry studies of polycyclic aromatic hydrocarbons in ancient terrestrial rocks. Journal of the American Society for Mass Spectrometry, 2001, 12, 989-1001.	1.2	18
258	Effect of sequence length, sequence frequency, and data acquisition rate on the performance of a Hadamard transform time-of-flight mass spectrometer. Journal of the American Society for Mass Spectrometry, 2001, 12, 1302-1311.	1.2	31
259	Vibrational Control in the Reaction of Methane with Atomic Chlorine. Journal of the American Chemical Society, 2001, 123, 12714-12715.	6.6	83
260	Vibrational and collisional energy effects in the reaction of ammonia ions with methylamine. Journal of Chemical Physics, 2001, 115, 124-132.	1.2	3
261	Separation of related opiate compounds using capillary electrochromatography. Electrophoresis, 2000, 21, 737-742.	1.3	31
262	Softening of fused-silica capillaries during particle packing. Electrophoresis, 2000, 21, 1430-1431.	1.3	1
263	Enantiomeric separation of amino acids and nonprotein amino acids using a particle-loaded monolithic column. Electrophoresis, 2000, 21, 3145-3151.	1.3	79
264	Spinning molecules to bits. Nature, 2000, 407, 33-34.	13.7	3
265	Characterization of a Hadamard transform time-of-flight mass spectrometer. Review of Scientific Instruments, 2000, 71, 1306-1318.	0.6	45
266	Scattering of xenon from Ni(111): Collision-induced corrugation and energy transfer dynamics. Journal of Chemical Physics, 2000, 112, 1975-1983.	1,2	15
267	Molecular TennisFlat Smashes and Wicked Cuts. Accounts of Chemical Research, 2000, 33, 199-205.	7.6	43
268	On the Love of Teaching and the Challenge of Online Learning: A Few Reflections. Journal of Chemical Education, 2000, 77, 1106.	1.1	7
269	Speed-Dependent Photofragment Orientation in the Photodissociation of OCS at 223 nm. Journal of Physical Chemistry A, 1999, 103, 10144-10148.	1.1	47
270	Differential cross sections for H+D2→HD (v′=2, J′=0,3,5)+D at 1.55 eV. Journal of Chemical Physics, 12490-2498.	1999 _{1.2} 111,	28

#	Article	IF	CITATIONS
271	Measurement of the HD(v′=2,J′=3) product differential cross section for the H+D2 exchange reaction at 1.55±0.05 eV using the photoloc technique. Journal of Chemical Physics, 1999, 111, 1022-1034.	1.2	41
272	Differential cross sections for H+D2→HD(v′=1, J′=1,5,8)+D at 1.7 eV. Journal of Chemical Physics, 1999, 1035-1042.	111,	34
273	Relationship between bipolar moments and molecule-frame polarization parameters in Doppler photofragment spectroscopy. Journal of Chemical Physics, 1999, 111, 8751-8754.	1.2	38
274	Photofragment angular momentum distributions in the molecular frame: Determination and interpretation. Journal of Chemical Physics, 1999, 110, 3341-3350.	1.2	139
275	Reaction of state-selected ammonia ions with methane. Journal of Chemical Physics, 1999, 111, 2507-2512.	1.2	7
276	Measurements of Cl-atom photofragment angular momentum distributions in the photodissociation of Cl2 and ICl. Journal of Chemical Physics, 1999, 110, 3351-3359.	1.2	75
277	Interdisciplinary Research: From Belief to Reality. Science, 1999, 283, 642-643.	6.0	193
278	UV Irradiation of Polycyclic Aromatic Hydrocarbons in Ices: Production of Alcohols, Quinones, and Ethers. Science, 1999, 283, 1135-1138.	6.0	352
279	Chemical Transformations in Individual Ultrasmall Biomimetic Containers. Science, 1999, 283, 1892-1895.	6.0	236
280	BIOSENSORS IN CHEMICAL SEPARATIONS. Annual Review of Biophysics and Biomolecular Structure, 1998, 27, 165-198.	18.3	42
281	Angular Distributions for the Cl + C2H6→ HCl + C2H5Reaction Observed via Multiphoton Ionization of the C2H5Radical. Journal of Physical Chemistry A, 1998, 102, 2270-2273.	1.1	42
282	Screening of Receptor Antagonists Using Agonist-Activated Patch Clamp Detection in Chemical Separations. Analytical Chemistry, 1998, 70, 2468-2474.	3.2	12
283	Preparation and Characterization of Monolithic Porous Capillary Columns Loaded with Chromatographic Particles. Analytical Chemistry, 1998, 70, 5103-5107.	3.2	175
284	Advances in Capillary Electrochromatography:Â Rapid and High-Efficiency Separations of PAHs. Analytical Chemistry, 1998, 70, 4787-4792.	3.2	91
285	Hadamard Transform Time-of-Flight Mass Spectrometry. Analytical Chemistry, 1998, 70, 3735-3741.	3.2	82
286	Vibrational and Translational Energy Effects in the Reaction of Ammonia lons with Water Molecules. Journal of Physical Chemistry A, 1998, 102, 9593-9598.	1.1	7
287	Reaction dynamics of atomic chlorine with methane: Importance of methane bending and torsional excitation in controlling reactivity. Journal of Chemical Physics, 1998, 109, 9719-9727.	1.2	78
288	Photofragment Helicity Caused by Matter-Wave Interference from Multiple Dissociative States., 1998, 281, 1346-1349.		104

#	Article	IF	CITATIONS
289	Anatomy of an Elementary Chemical Reaction. Journal of Chemical Education, 1998, 75, 1105.	1.1	33
290	Photolysis of ICl causes mass-dependent interference in the Cl(2P3/2) photofragment angular momentum distributions. Journal of Chemical Physics, 1998, 108, 8291-8294.	1.2	39
291	Measurement of the rotational distribution for the OD product from the reaction ND3++D2Oâ†'ND4++OD under translationally thermal conditions. Journal of Chemical Physics, 1997, 107, 772-778.	1.2	3
292	Rotationally resolved photoelectron spectra from vibrational autoionization of NO Rydberg levels. Journal of Chemical Physics, 1997, 106, 2239-2247.	1.2	24
293	Determination of differential-cross-section moments from polarization-dependent product velocity distributions of photoinitiated bimolecular reactions. Journal of Chemical Physics, 1997, 107, 9382-9391.	1.2	31
294	Differential cross section polarization moments: Location of the D-atom transfer in the transition-state region for the reactions $Cl+C2D6\hat{a}^{\dagger}DCl(v\hat{a}\in^2=0,J\hat{a}\in^2=1)+C2D5$ and $Cl+CD4\hat{a}^{\dagger}DCl(v\hat{a}\in^2=0,J\hat{a}\in^2=1)$ Journal of Chemical Physics, 1997, 107, 9392-9405.	l) ± . © D3.	59
295	New Developments in Capillary Electrophoresis. Development and Improvement of Capillary Electrophoresis. Formation of a reverse parabolic flow profile with electroosmosis in capillary zone electrophoresis and the behavior of zone progress related to the application of a pulsed electric field Bunseki Kagaku. 1997. 46, 409-414.	0.1	15
296	Microprobe two-step laser mass spectrometry as an analytical tool for meteoritic samples. Symposium - International Astronomical Union, 1997, 178, 305-320.	0.1	19
297	Injection of Ultrasmall Samples and Single Molecules into Tapered Capillaries. Analytical Chemistry, 1997, 69, 1801-1807.	3.2	53
298	Patch Clamp Detection in Capillary Electrophoresis. Analytical Chemistry, 1997, 69, 3427-3434.	3.2	19
299	OPTICAL DETECTION OF SINGLE MOLECULES. Annual Review of Biophysics and Biomolecular Structure, 1997, 26, 567-596.	18.3	409
300	Two-color resonant four-wave mixing: Analytical expressions for signal intensity. Journal of Chemical Physics, 1997, 106, 3090-3102.	1.2	56
301	Where's the Chemistry in Science Museums?. Journal of Chemical Education, 1996, 73, A198.	1.1	8
302	Biased Diffusion, Optical Trapping, and Manipulation of Single Molecules in Solution. Journal of the American Chemical Society, 1996, 118, 6512-6513.	6.6	107
303	Molecularâ€orbital decomposition of the ionization continuum for a diatomic molecule by angleâ€and energyâ€resolved photoelectron spectroscopy. II. Ionization continuum of NO. Journal of Chemical Physics, 1996, 104, 4568-4580.	1.2	31
304	Effects of different population, orientation, and alignment relaxation rates in resonant fourâ€wave mixing. Journal of Chemical Physics, 1996, 104, 3947-3955.	1.2	45
305	Dynamics for the Cl+C2H6→HCl+C2H5 reaction examined through stateâ€specific angular distributions. Journal of Chemical Physics, 1996, 105, 7550-7559.	1.2	84
306	Screening for genetic mutations. Nature, 1996, 380, 207-207.	13.7	62

#	Article	IF	CITATIONS
307	Picturing the Transition-State Region and Understanding Vibrational Enhancement for the Cl + CH4→ HCl + CH3Reaction. The Journal of Physical Chemistry, 1996, 100, 7938-7947.	2.9	143
308	Energy and angular momentum control of the specific opacity functions in the Ba+Hlâ†'Bal+H reaction. Journal of Chemical Physics, 1996, 104, 7947-7964.	1.2	15
309	Molecularâ€orbital decomposition of the ionization continuum for a diatomic molecule by angle―and energyâ€resolved photoelectron spectroscopy. I. Formalism. Journal of Chemical Physics, 1996, 104, 4554-4567.	1.2	67
310	ORIENTATION AND ALIGNMENT OF THE PRODUCTS OF BIMOLECULAR REACTIONS. Advanced Series in Physical Chemistry, 1996, , 936-1063.	1.5	15
311	Analysis of underivatized amino acids by capillary electrophoresis using constant potential amperometric detection. Electrophoresis, 1995, 16, 493-497.	1.3	31
312	Cavity ringâ€down spectroscopy for quantitative absorption measurements. Journal of Chemical Physics, 1995, 102, 2708-2717.	1.2	429
313	Reaction of Cl with vibrationally excited CH4 and CHD3: Stateâ€toâ€state differential cross sections and steric effects for the HCl product. Journal of Chemical Physics, 1995, 103, 7313-7335.	1.2	228
314	Core extraction for measuring stateâ€toâ€state differential cross sections of bimolecular reactions. Journal of Chemical Physics, 1995, 103, 7299-7312.	1.2	114
315	Determination of Photodestruction Quantum Yields Using Capillary Electro-Phoresis: Application to <i> 0 < i > -Phthalalde-Hyde \hat{I}^2-Mercaptoethanol-Labeled Amino Acids. Journal of Liquid Chromatography and Related Technologies, 1995, 18, 3833-3846.</i>	0.9	3
316	Measurement of the stateâ€specific differential cross section for the H+D2→HD(v′=4, J′=3)+D reaction at a collision energy of 2.2 eV. Journal of Chemical Physics, 1995, 103, 5157-5160.	1.2	60
317	HYDROGEN RECOMBINATIVE DESORPTION DYNAMICS. Advanced Series in Physical Chemistry, 1995, , 977-1043.	1.5	2
318	Influence of vibrational excitation and collision energy on the ionâ€molecule reaction NH+3(ν2)+ND3. Journal of Chemical Physics, 1994, 101, 3772-3786.	1.2	35
319	Guided ion beam measurement of the product branching ratios for the ionâ€molecule reaction N++O2 as a function of collision energy. Journal of Chemical Physics, 1994, 101, 3763-3771.	1.2	15
320	Field programming to achieve uniform sensitivity for on-line detection in electrophoresis. Electrophoresis, 1994, 15, 225-227.	1.3	3
321	State-to-state differential cross sections from photoinitiated bulb reactions. Chemical Physics Letters, 1993, 212, 155-162.	1.2	108
322	Reactions à la mode. Nature, 1993, 365, 105-106.	13.7	13
323	Integral rate constant measurements of the reaction H +D2O → HD(v', j')+OD. Journal of Chemical Physics, 1993, 98, 4636-4643.	1.2	46
324	Photoionization dynamics of the NO A 2Σ+ state deduced from energy―and angleâ€resolved photoelectron spectroscopy. Journal of Chemical Physics, 1993, 99, 6537-6544.	1.2	28

#	Article	IF	CITATIONS
325	The interaction of CO with Ni(111): Rainbows and rotational trapping. Journal of Chemical Physics, 1993, 98, 9134-9147.	1.2	42
326	Quasiclassical trajectory simulation of the kinematically constrained reaction Ba+Hlâ†'Bal+H. Journal of Chemical Physics, 1992, 97, 6208-6214.	1.2	14
327	Rotational line strengths for the photoionization of diatomic molecules. Journal of Chemical Physics, 1992, 97, 2891-2899.	1.2	44
328	Internalâ€state distributions of H2 desorbed from mono―and dihydride species on Si(100). Journal of Chemical Physics, 1992, 97, 3704-3709.	1.2	59
329	Internalâ€state distribution of recombinative hydrogen desorption from Si(100). Journal of Chemical Physics, 1992, 96, 3995-4006.	1.2	87
330	Recombinative desorption of H2 on Si(100)â€(2Ã−1) and Si(111)â€(7Ã−7): Comparison of internal state distributions. Journal of Chemical Physics, 1992, 97, 1520-1530.	1.2	81
331	Experimental determination of the specific opacity function for the Ba+Hlâ†'Bal(v=0)+H reaction. Journal of Chemical Physics, 1992, 96, 2786-2798.	1.2	18
332	Measurement of circular dichroism in rotationally resolved photoelectron angular distributions following the photoionization of NO A 2Σ+. Journal of Chemical Physics, 1992, 97, 4948-4957.	1.2	66
333	Measurement of relative stateâ€toâ€state rate constants for the reaction D+H2(v, j)â†'HD(v', j') Chemical Physics, 1992, 97, 7323-7341.	+H. Journa 1.2	l of
334	Determination of absolute thermal rate constants for the charge-transfer reaction DBr+(2â^l,v+)+HBrâ†'HBr+(2â^l′,v′+)+DBr. Journal of Chemical Physics, 1992, 96, 4293-4302.	1.2	18
335	Chemiluminescence detection in capillary electrophoresis. Journal of High Resolution Chromatography, 1992, 15, 133-135.	2.0	78
336	Effect of breaking cylindrical symmetry on photoelectron angular distributions resulting from resonanceâ€enhanced twoâ€photon ionization. Journal of Chemical Physics, 1991, 95, 1746-1756.	1.2	61
337	TWO-STEP LASER MASS SPECTROMETRY. Advances in Multi-photon Processes and Spectroscopy, 1991, , 1-167.	0.6	9
338	Application of ion imaging to the atom–molecule exchange reaction: H+HI→H2+I. Journal of Chemical Physics, 1991, 94, 4672-4675.	1.2	51
339	Bondâ€specific chemistry: OD:OH product ratios for the reactions H+HOD(100) and H+HOD(001). Journal of Chemical Physics, 1991, 95, 8647-8648.	1.2	217
340	The H+paraâ€H2 reaction: Influence of dynamical resonances on H2 (v'=1, j '=1 and 3) integral cross sections. Journal of Chemical Physics, 1991, 94, 1069-1080.	1.2	53
341	Comparison of experimental and theoretical integral cross sections for D+H2(v=1, j=1)→HD(v'=1, j')+H. Journal of Chemical Physics, 1991, 95, 1648-1662.	1.2	96
342	Rotational and vibrational effects in the E 1Σ+g–X 1Σ+g twoâ€photon transitions of H2, HD, and D2. of Chemical Physics, 1991, 95, 205-213.	Journal	35

#	Article	IF	CITATIONS
343	Product internalâ€state distribution for the reaction H+HI→H2+I. Journal of Chemical Physics, 1991, 95, 1663-1670.	1.2	15
344	Effect of reagent rotation on product energy disposal in the light atom transfer reaction O(3P)+HCl(v=2,J=1,6,9)â†'OH(v',N')+Cl(2P). Journal of Chemical Physics, 1991, 94, 2704-2712.	1.2	71
345	Complete description of twoâ€photon (1+1') ionization of NO deduced from rotationally resolved photoelectron angular distributions. Journal of Chemical Physics, 1991, 95, 1757-1767.	1.2	77
346	Probing the dynamics of hydrogen recombination on Si(100). Journal of Chemical Physics, 1991, 95, 5482-5485.	1.2	39
347	On-Column Radioisotope Detection for Capillary Electrophoresis. ACS Symposium Series, 1990, , 60-89.	0.5	5
348	D+H2(ν =1, J=1): Rovibronic state to rovibronic state reaction dynamics. Journal of Chemical Physics, 1990, 92, 2107-2109.	1.2	56
349	Selection rules for the photoionization of diatomic molecules. Journal of Chemical Physics, 1990, 93, 3033-3038.	1.2	180
350	2+1 resonantly enhanced multiphoton ionization of CO via the E 1ΖX 1Σ+ transition: From measured signals to quantitative population distributions. Journal of Chemical Physics, 1990, 93, 8557-8564.	ion 1.2	57
351	Fluorescence polarization of a diatomic fragment following photodissociation of a triatomic precursor. Molecular Physics, 1990, 70, 1159-1162.	0.8	11
352	Detection of Concealed Explosive. Science, 1990, 248, 1471-1472.	6.0	1
353	Detection of Concealed Explosive. Science, 1990, 248, 1471-1472.	6.0	1
354	Highâ€resolution angle―and energyâ€resolved photoelectron spectroscopy of NO: Partial wave decomposition of the ionization continuum. Journal of Chemical Physics, 1989, 91, 2216-2234.	1.2	119
355	The H+D2 reaction: Quantumâ€state distributions at collision energies of 1.3 and 0.55 eV. Journal of Chemical Physics, 1989, 91, 7514-7529.	1.2	65
356	Effect of indistinguishable nuclei on product rotational distributions: The H+HIâ†'H2+I reaction. Journal of Chemical Physics, 1989, 90, 4625-4627.	1.2	22
357	Construction of a shuttered timeâ€ofâ€flight mass spectrometer for selective ion detection. Review of Scientific Instruments, 1989, 60, 717-719.	0.6	21
358	Quantitative Determination of HD Internal State Distributions via (2+1) REMPI. Israel Journal of Chemistry, 1989, 29, 369-382.	1.0	20
359	Overtoneâ€induced isomerization of allyl isocyanide. Journal of Chemical Physics, 1988, 89, 5704-5714.	1.2	18
360	Numerical computation of 9-jsymbols. Molecular Physics, 1988, 65, 1263-1268.	0.8	9

#	Article	IF	CITATIONS
361	Determination of population, alignment, and orientation using laser induced fluorescence with unresolved emission. Journal of Chemical Physics, 1988, 88, 7357-7368.	1.2	50
362	Determination of orientation of the ground state using twoâ€photon nonresonant excitation. Journal of Chemical Physics, 1988, 88, 6707-6732.	1.2	79
363	Comparison of the Ca+HF(DF) and Sr+HF(DF) reaction dynamics. Journal of Chemical Physics, 1988, 89, 6283-6294.	1.2	47
364	Direct inelastic scattering of N2 from Ag(111). I. Rotational populations and alignment. Journal of Chemical Physics, $1988, 89, 2558-2571$.	1.2	126
365	Vibrationally stateâ€selected reactions of ammonia ions. III. NH+3(v)+ND3 and ND+3(v)+NH3. Journal of Chemical Physics, 1987, 87, 3453-3460.	1,2	43
366	Population and alignment of N2 scattered from Ag(111). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 513-517.	0.9	49
367	Alignment of CN from 248 nm photolysis of ICN: A new model of the $\widehat{A}f$ continuum dissociation dynamics. Journal of Chemical Physics, 1987, 87, 303-313.	1.2	67
368	Alignment and orientation of N2 scattered from Ag(111). Journal of Chemical Physics, 1987, 87, 3247-3249.	1.2	67
369	Dynamics of kinematically constrained bimolecular reactions having constant product recoil energy. Journal of Chemical Physics, 1987, 86, 3968-3977.	1.2	24
370	Vibrationally stateâ€selected reactions of ammonia ions. I. NH+3(v)+D2. Journal of Chemical Physics, 1986, 84, 5527-5535.	1.2	57
371	Information on the impact parameter dependence of the Ba+Hl → Bal(ν=8)+H reaction. Journal of Che Physics, 1986, 85, 856-864.	mical	45
372	Determination of population and alignment of the ground state using twoâ€photon nonresonant excitation. Journal of Chemical Physics, 1986, 85, 6874-6897.	1.2	139
373	Dynamics of recombinative desorption of H2 and D2 from Cu(110), Cu(111), and sulfurâ€covered Cu(111). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1985, 3, 1649-1654.	0.9	13
374	Rotational assignment using phase relationships in optical–optical double resonance: The Bal C 2ΖXâ€% system. Journal of Chemical Physics, 1985, 82, 4449-4459.	∘2Σ+ 1.2	16
375	Evidence for inhomogeneous broadening in vibrational overtone transitions: Formation of 1, 3â€cyclohexadiene from cisâ€1, 3, 5â€hexatriene. Journal of Chemical Physics, 1985, 82, 4791-4801.	1.2	25
376	Depolarization of optically prepared molecules by two randomly oriented spins. Molecular Physics, 1985, 55, 1-9.	0.8	73
377	Multiphoton ionization photoelectron spectroscopy of phenol: Vibrational frequencies and harmonic force field for the 2B1 cation. Journal of Chemical Physics, 1985, 82, 5329-5339.	1.2	66
378	Resonance-enhanced multiphoton ionization of molecular hydrogen via the E,F1 $\hat{1}$ Eg+ state: Photoelectron energy and angular distributions. Chemical Physics Letters, 1984, 105, 22-27.	1.2	96

#	Article	IF	Citations
379	Photodissociation dynamics of triatomic molecules. Molecular Physics, 1983, 50, 49-63.	0.8	35
380	Effect of intensity on fragment internal state distributions in the infrared multiphoton dissociation of vinyl cyanide. Journal of Chemical Physics, 1982, 76, 2390-2398.	1.2	7
381	Effect of atomic reagent approach geometry on reactivity: Reactions of aligned Ca(1P1) with HCl, Cl2, and CCl4. Journal of Chemical Physics, 1982, 77, 2416-2429.	1.2	168
382	Effect of pulse intensity distributions on fragment internal energy in the infrared multiphoton dissociation of vinyl cyanide. Journal of Chemical Physics, 1982, 77, 2895-2901.	1.2	3
383	A search for modeâ€selective chemistry: The unimolecular dissociation of tâ€butyl hydroperoxide induced by vibrational overtone excitation. Journal of Chemical Physics, 1982, 77, 4447-4458.	1.2	97
384	Measurement of product alignment in beam–gas chemiluminescent reactions. Journal of Chemical Physics, 1981, 75, 2222-2230.	1.2	80
385	Rotational analysis of congested spectra: Application of population labeling to the Bal C–X system. Journal of Chemical Physics, 1981, 75, 5575-5577.	1.2	32
386	Effect of atomic reagent approach geometry on electronic state branching: The Ca(1P1) + HCl reaction. Journal of Chemical Physics, 1981, 75, 3636-3637.	1.2	85
387	Dependence of diatomic photofragment fluorescence polarization on triatomic predissociation lifetime. Molecular Physics, 1981, 43, 1419-1428.	0.8	28
388	Comparison of reagent translation and vibration on the dynamics of the endothermic reaction Sr+HF. Journal of Chemical Physics, 1980, 72, 6250-6257.	1.2	66
389	Effect of reagent translation on the dynamics of the exothermic reaction Ba+HF. Journal of Chemical Physics, 1980, 72, 6237-6249.	1.2	66
390	Laser Fluorometric Determination of Aflatoxin B1 in Corn. Journal of the Association of Official Analytical Chemists, 1979, 62, 564-569.	0.2	6
391	Polarized photofluorescence excitation spectroscopy. Molecular Physics, 1979, 38, 2049-2055.	0.8	58
392	Scattering kinematics: Transformation of differential cross sections between two moving frames. Journal of Chemical Physics, 1978, 69, 1737-1741.	1.2	18
393	Effect of reagent orientation and rotation upon product state distribution in the reaction Sr+HF (v=1,J) →SrF(v′, J′) +H. Journal of Chemical Physics, 1978, 69, 5199-5201.	1.2	149
394	Theoretical study of collinear Be+FH(v1) â†'BeF(v2) +H. Journal of Chemical Physics, 1978, 69, 3790-3806.	1.2	45
395	Effect of vibrational excitation on the molecular beam reactions of Ca and Sr with HF and DF. Journal of Chemical Physics, 1978, 68, 3360-3365.	1.2	98
396	Angular distribution of product internal states using laser fluorescence detection: The Ba+KCl reaction. Journal of Chemical Physics, 1976, 64, 2632.	1.2	38

#	Article	IF	CITATIONS
397	Observation of radiationless processes in a molecular beam. Journal of Chemical Physics, 1976, 64, 1242-1243.	1.2	40
398	A lowâ€temperature source for the generation of uranium vapor. Journal of Chemical Physics, 1976, 64, 431-432.	1.2	10
399	Stateâ€toâ€state reaction rates: Ba+HF(v=0,1) → BaF(v=0–12)+H. Journal of Chemical Physics, 1976, 64, 1774-1783.	1.2	138
400	Lifetimeâ€separated spectroscopy: Observation and rotational analysis of the BaO A′ 1Î state. Journal of Chemical Physics, 1975, 62, 2050-2059.	1.2	82
401	Laser isotope separation using an intracavity absorption technique. Journal of Chemical Physics, 1975, 63, 5503-5505.	1.2	27
402	Fluorescence of the KH molecule. Journal of Chemical Physics, 1974, 60, 1182-1182.	1.2	25
403	Radiative lifetimes of the alkaline earth monohalides. Journal of Chemical Physics, 1974, 60, 2330-2339.	1.2	171
404	Primitive angular distribution studies of internal states in crossedâ€beam reactions using laser fluorescence detection. Journal of Chemical Physics, 1974, 61, 2464-2465.	1.2	51
405	Radiative Lifetime of the B 1Îu State of K2. Journal of Chemical Physics, 1970, 53, 3094-3100.	1.2	60
406	What Role Does the Electric Double Layer Play in Redox Reactions at Planar Electrostatically Charged Insulating Surfaces?. Topics in Catalysis, 0 , 1 .	1.3	3
407	Coherent Preparation of Highly Vibrating and Rotating D ₂ Molecules. Journal of Physical Chemistry Letters, 0, , 4682-4687.	2.1	4