Christin Carter-Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/127380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell, 1993, 74, 237-244.	28.9	955
2	The role of STAT proteins in growth hormone signaling. Oncogene, 2000, 19, 2585-2597.	5.9	244
3	Growth Hormone, Interferon-γ, and Leukemia Inhibitory Factor Promoted Tyrosyl Phosphorylation of Insulin Receptor Substrate-1. Journal of Biological Chemistry, 1995, 270, 14685-14692.	3.4	231
4	Growth Hormone Stimulates Phosphorylation and Activation of Elk-1 and Expression of c-fos, egr-1, and junB through Activation of Extracellular Signal-regulated Kinases 1 and 2. Journal of Biological Chemistry, 1998, 273, 31327-31336.	3.4	230
5	Recent advances in growth hormone signaling. Reviews in Endocrine and Metabolic Disorders, 2006, 7, 225-235.	5.7	196
6	Iron Uptake via DMT1 Integrates Cell Cycle with JAK-STAT3 Signaling to Promote Colorectal Tumorigenesis. Cell Metabolism, 2016, 24, 447-461.	16.2	168
7	Activation of Acute Phase Response Factor (APRF)/Stat3 Transcription Factor by Growth Hormone. Journal of Biological Chemistry, 1995, 270, 3974-3979.	3.4	166
8	Human SH2B1 mutations are associated with maladaptive behaviors and obesity. Journal of Clinical Investigation, 2012, 122, 4732-4736.	8.2	147
9	Growth Hormone-promoted Tyrosyl Phosphorylation of SHC Proteins and SHC Association with Grb2. Journal of Biological Chemistry, 1995, 270, 7587-7593.	3.4	141
10	Mutation of the SHP-2 Binding Site in Growth Hormone (GH) Receptor Prolongs GH-Promoted Tyrosyl Phosphorylation of GH Receptor, JAK2, and STAT5B. Molecular Endocrinology, 2000, 14, 1338-1350.	3.7	123
11	Autophosphorylation of JAK2 on Tyrosines 221 and 570 Regulates Its Activity. Molecular and Cellular Biology, 2004, 24, 4955-4967.	2.3	120
12	Growth Hormone, Interferon-γ, and Leukemia Inhibitory Factor Utilize Insulin Receptor Substrate-2 in Intracellular Signaling. Journal of Biological Chemistry, 1996, 271, 29415-29421.	3.4	116
13	Signaling Molecules Involved in Coupling Growth Hormone Receptor to Mitogen-Activated Protein Kinase Activation*. Endocrinology, 1997, 138, 4301-4307.	2.8	108
14	Tyrosine 813 Is a Site of JAK2 Autophosphorylation Critical for Activation of JAK2 by SH2-Bβ. Molecular and Cellular Biology, 2004, 24, 4557-4570.	2.3	102
15	SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other. Trends in Endocrinology and Metabolism, 2007, 18, 38-45.	7.1	99
16	Growth Hormone Regulation of SIRP and SHP-2 Tyrosyl Phosphorylation and Association. Journal of Biological Chemistry, 1998, 273, 7112-7117.	3.4	89
17	SH2B1 Enhances Leptin Signaling by Both Janus Kinase 2 Tyr813 Phosphorylation-Dependent and -Independent Mechanisms. Molecular Endocrinology, 2007, 21, 2270-2281.	3.7	89
18	SH2-B Is Required for Nerve Growth Factor-induced Neuronal Differentiation. Journal of Biological Chemistry, 1999, 274, 10590-10594.	3.4	79

CHRISTIN CARTER-SU

#	Article	IF	CITATIONS
19	Growth hormone signaling pathways. Growth Hormone and IGF Research, 2016, 28, 11-15.	1.1	77
20	A Functional DNA Binding Domain Is Required for Growth Hormone-induced Nuclear Accumulation of Stat5B. Journal of Biological Chemistry, 1999, 274, 5138-5145.	3.4	76
21	Growth Hormone-Induced Tyrosyl Phosphorylation and Deoxyribonucleic Acid Binding Activity of Stat5A and Stat5B*. Endocrinology, 1997, 138, 3426-3434.	2.8	64
22	Platelet-derived Growth Factor (PDGF) Stimulates the Association of SH2-BÎ ² with PDGF Receptor and Phosphorylation of SH2-BÎ ² . Journal of Biological Chemistry, 1998, 273, 21239-21245.	3.4	59
23	Negative Regulation of Growth Hormone Receptor/JAK2 Signaling by Signal Regulatory Protein α. Journal of Biological Chemistry, 2000, 275, 28222-28229.	3.4	59
24	SH2-Bβ Is a Rac-binding Protein That Regulates Cell Motility. Journal of Biological Chemistry, 2002, 277, 10669-10677.	3.4	57
25	SH2-B Family Members Differentially Regulate JAK Family Tyrosine Kinases. Journal of Biological Chemistry, 2002, 277, 8673-8681.	3.4	53
26	SH2-B Is Required for Growth Hormone-induced Actin Reorganization. Journal of Biological Chemistry, 2000, 275, 13126-13133.	3.4	52
27	Phosphorylation of JAK2 at Serine 523: a Negative Regulator of JAK2 That Is Stimulated by GrowthHormone and Epidermal Growth Factor. Molecular and Cellular Biology, 2006, 26, 4052-4062.	2.3	52
28	JAK2, But Not Src Family Kinases, Is Required for STAT, ERK, and Akt Signaling in Response to Growth Hormone in Preadipocytes and Hepatoma Cells. Molecular Endocrinology, 2008, 22, 1825-1841.	3.7	47
29	Signalling Pathway of GH Endocrine Journal, 1996, 43, S65-S70.	1.6	42
30	SH2-B, a Membrane-associated Adapter, Is Phosphorylated on Multiple Serines/Threonines in Response to Nerve Growth Factor by Kinases within the MEK/ERK Cascade. Journal of Biological Chemistry, 1999, 274, 26485-26492.	3.4	41
31	Interaction of Adipocyte Fatty Acid-binding Protein (AFABP) and JAK2. Journal of Biological Chemistry, 2009, 284, 13473-13480.	3.4	41
32	Growth Hormone-dependent Phosphorylation of Tyrosine 333 and/or 338 of the Growth Hormone Receptor. Journal of Biological Chemistry, 1995, 270, 21738-21744.	3.4	39
33	Functional Characterization of Obesity-Associated Variants Involving the α and β Isoforms of Human SH2B1. Endocrinology, 2014, 155, 3219-3226.	2.8	39
34	Binding of SH2-B Family Members within a Potential Negative Regulatory Region Maintains JAK2 in an Active State. Molecular and Cellular Biology, 2006, 26, 6381-6394.	2.3	37
35	Regulation of Glucose Transport and c-fos and egr-1 Expression in Cells with Mutated or Endogenous Growth Hormone Receptors*. Endocrinology, 1998, 139, 1863-1871.	2.8	36
36	Growth Hormone-Induced Tyrosyl Phosphorylation and Deoxyribonucleic Acid Binding Activity of Stat5A and Stat5B. Endocrinology, 1997, 138, 3426-3434.	2.8	35

CHRISTIN CARTER-SU

#	Article	IF	CITATIONS
37	YXXL Motifs in SH2-Bॆ Are Phosphorylated by JAK2, JAK1, and Platelet-derived Growth Factor Receptor and Are Required for Membrane Ruffling. Journal of Biological Chemistry, 2003, 278, 11970-11978.	3.4	34
38	SH2B1β (SH2-Bβ) Enhances Expression of a Subset of Nerve Growth Factor-Regulated Genes Important for Neuronal Differentiation Including Genes Encoding Urokinase Plasminogen Activator Receptor and Matrix Metalloproteinase 3/10. Molecular Endocrinology, 2008, 22, 454-476.	3.7	33
39	Adapter Protein SH2-BÎ ² Undergoes Nucleocytoplasmic Shuttling: Implications for Nerve Growth Factor Induction of Neuronal Differentiation. Molecular and Cellular Biology, 2004, 24, 3633-3647.	2.3	29
40	The Dyslexia-susceptibility Protein KIAA0319 Inhibits Axon Growth Through Smad2 Signaling. Cerebral Cortex, 2017, 27, 1732-1747.	2.9	29
41	SH2-B Is a Positive Regulator of Nerve Growth Factor-mediated Activation of the Akt/Forkhead Pathway in PC12 Cells. Journal of Biological Chemistry, 2004, 279, 133-141.	3.4	28
42	Nucleocytoplasmic Shuttling of the Adapter Protein SH2B1β (SH2-Bβ) Is Required for Nerve Growth Factor (NGF)-Dependent Neurite Outgrowth and Enhancement of Expression of a Subset of NGF-Responsive Genes. Molecular Endocrinology, 2009, 23, 1077-1091.	3.7	25
43	Phosphorylation of the adaptor protein SH2B1βregulates its ability to enhance growth hormone (GH)-dependent macrophage motility. Journal of Cell Science, 2013, 126, 1733-43.	2.0	25
44	Phosphorylation controls a dual-function polybasic nuclear localization sequence in the adapter protein SH2B1β to regulate its cellular function and distribution. Journal of Cell Science, 2011, 124, 1542-1552.	2.0	17
45	Identification of SH2B1β as a focal adhesion protein that regulates focal adhesion size and number. Journal of Cell Science, 2011, 124, 3095-3105.	2.0	16
46	Crucial Role of the SH2B1 PH Domain for the Control of Energy Balance. Diabetes, 2019, 68, 2049-2062.	0.6	16
47	Adapter Protein SH2-Bβ Stimulates Actin-Based Motility of Listeria monocytogenes in a Vasodilator-Stimulated Phosphoprotein (VASP)-Dependent Fashion. Infection and Immunity, 2007, 75, 3581-3593.	2.2	10
48	Research Resource: Identification of Novel Growth Hormone-Regulated Phosphorylation Sites by Quantitative Phosphoproteomics. Molecular Endocrinology, 2012, 26, 1056-1073.	3.7	10
49	Phosphorylation of the Unique C-Terminal Tail of the Alpha Isoform of the Scaffold Protein SH2B1 Controls the Ability of SH2B1 <i>α</i> To Enhance Nerve Growth Factor Function. Molecular and Cellular Biology, 2018, 38, .	2.3	8
50	JAKs, Stats, and CK2?. Blood, 2011, 118, 5-6.	1.4	4
51	Deletion of the Brain-Specific α and δ Isoforms of Adapter Protein SH2B1 Protects Mice From Obesity. Diabetes, 2021, 70, 400-414.	0.6	4
52	The nucleolar $\hat{l'}$ isoform of adapter protein SH2B1 enhances morphological complexity and function of cultured neurons. Journal of Cell Science, 2022, 135, .	2.0	3
53	The SH2-B Adaptor Protein Negatively Regulates EPO-Dependent Signalling Via Interaction with Erythropoietin Receptor Ptyr-343. Blood, 2008, 112, 892-892.	1.4	Ο
54	Mutations in the PH Domain of SH2B1 Result in Energy Imbalance and/or Impaired Glucose Metabolism. FASEB Journal, 2018, 32, 923.5.	0.5	0

#	Article	IF	CITATIONS
55	OR12-6 Deletion Of The Brain-Specific α And δ Isoforms Of SH2B1 Protects Against Diet-Induced Obesity In A Leptin-Independent Manner. Journal of the Endocrine Society, 2019, 3, .	0.2	0
56	Mentoring for success in physiology. Bodil M. Schmidt Nielsen Award presentation. Physiologist, 2005, 48, 167, 172-8.	0.0	0