
Suping Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1273231/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using single cell type proteomics to identify Al-induced proteomes in outer layer cells and interior tissues in the apical meristem/cell division regions of tomato root-tips. Journal of Proteomics, 2022, 255, 104486.	2.4	6
2	Identification of heat-induced proteomes in meiotic pollen mother cells of tomato 'Maxifort' using single-cell-type tandem mass tag (TMT) proteomics. Vegetable Research, 2022, 2, 1-14.	0.7	1
3	Non-sterile fermentation of food waste using thermophilic and alkaliphilic Bacillus licheniformis YNP5-TSU for 2,3-butanediol production. Waste Management, 2021, 120, 248-256.	7.4	19
4	Biochemical and genomic identification of novel thermophilic Bacillus licheniformis strains YNP1-TSU, YNP2-TSU, and YNP3-TSU with potential in 2,3-butanediol production from non-sterile food waste fermentation. Food and Bioproducts Processing, 2021, 129, 34-45.	3.6	2
5	The Al-induced proteomes of epidermal and outer cortical cells in root apex of cherry tomato â€~LA 2710'. Journal of Proteomics, 2020, 211, 103560.	2.4	12
6	Thermophilic and Alkaliphilic <i>Bacillus licheniformis</i> YNP5-TSU as an Ideal Candidate for 2,3-Butanediol Production. ACS Sustainable Chemistry and Engineering, 2020, 8, 11244-11252.	6.7	13
7	Proteome profile changes during poly-hydroxybutyrate intracellular mobilization in gram positive Bacillus cereus tsu1. BMC Microbiology, 2020, 20, 122.	3.3	2
8	Microbial cellulolytic enzymes: diversity and biotechnology with reference to lignocellulosic biomass degradation. Reviews in Environmental Science and Biotechnology, 2020, 19, 621-648.	8.1	95
9	Comparative Proteomics of Root Apex and Root Elongation Zones Provides Insights into Molecular Mechanisms for Drought Stress and Recovery Adjustment in Switchgrass. Proteomes, 2020, 8, 3.	3.5	5
10	Al-induced proteomics changes in tomato plants over-expressing a glyoxalase I gene. Horticulture Research, 2020, 7, 43.	6.3	7
11	Overexpression of Pear (Pyrus pyrifolia) CAD2 in Tomato Affects Lignin Content. Molecules, 2019, 24, 2595.	3.8	22
12	Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives. Molecular Biotechnology, 2019, 61, 579-601.	2.4	58
13	PpNAC187 Enhances Lignin Synthesis in â€~Whangkeumbae' Pear (Pyrus pyrifolia) â€~Hard-End' Fruit. Molecules, 2019, 24, 4338.	3.8	17
14	Proteomic Effects of Magnesium Stress on Biofilm Associated Proteins Isolated from Cellulolytic Bacillus licheniformis YNP5-TSU. , 2019, 12, .		6
15	Bioinformatics profiling and expressional studies of microRNAs in root, stem and leaf of the bioenergy plant switchgrass (Panicum virgatum L.) under drought stress. Agri Gene, 2018, 8, 1-8.	1.9	6
16	Association of Proteomics Changes with Al-Sensitive Root Zones in Switchgrass. Proteomes, 2018, 6, 15.	3.5	9
17	Draft Genome Sequences of Three Cellulolytic Bacillus licheniformis Strains Isolated from Imperial Geyser, Amphitheater Springs, and Whiterock Springs inside Yellowstone National Park. Genome Announcements, 2017, 5, .	0.8	1
18	Draft Genome Sequence of Bacillus licheniformis Strain YNP1-TSU Isolated from Whiterock Springs in Yellowstone National Park. Genome Announcements, 2017, 5, .	0.8	5

SUPING ZHOU

#	Article	IF	CITATIONS
19	Effects of Al3+ and La3+ Trivalent Metal Ions on Tomato Fruit Proteomes. Proteomes, 2017, 5, 7.	3.5	3
20	Genome Structure of <i>Bacillus cereus</i> tsu1 and Genes Involved in Cellulose Degradation and Poly-3-Hydroxybutyrate Synthesis. International Journal of Polymer Science, 2017, 2017, 1-12.	2.7	7
21	Draft Genome Sequence of Bacillus altitudinis YNP4-TSU, Isolated from Yellowstone National Park. Genome Announcements, 2017, 5, .	0.8	4
22	Drought-Induced Leaf Proteome Changes in Switchgrass Seedlings. International Journal of Molecular Sciences, 2016, 17, 1251.	4.1	18
23	Development of a laser capture microscope-based single-cell-type proteomics tool for studying proteomes of individual cell layers of plant roots. Horticulture Research, 2016, 3, 16026.	6.3	34
24	Proteome Modification in Tomato Plants upon Long-Term Aluminum Treatment. Journal of Proteome Research, 2016, 15, 1670-1684.	3.7	37
25	Draft Genome Sequence of New Bacillus cereus Strain tsu1. Genome Announcements, 2014, 2, .	0.8	9
26	Effect of Aluminum Treatment on Proteomes of Radicles of Seeds Derived from Al-Treated Tomato Plants. Proteomes, 2014, 2, 169-190.	3.5	21
27	Differential Root Proteome Expression in Tomato Genotypes with Contrasting Drought Tolerance Exposed to Dehydration. Journal of the American Society for Horticultural Science, 2013, 138, 131-141.	1.0	31
28	Identification of Proteins for Salt Tolerance Using a Comparative Proteomics Analysis of Tomato Accessions with Contrasting Salt Tolerance. Journal of the American Society for Horticultural Science, 2013, 138, 382-394.	1.0	14
29	Heat-induced Proteome Changes in Tomato Leaves. Journal of the American Society for Horticultural Science, 2011, 136, 219-226.	1.0	26
30	Identification of Salt-induced Changes in Leaf and Root Proteomes of the Wild Tomato, Solanum chilense. Journal of the American Society for Horticultural Science, 2011, 136, 288-302.	1.0	42
31	Proteome changes induced by aluminium stress in tomato roots. Journal of Experimental Botany, 2009, 60, 1849-1857.	4.8	103
32	Aluminum induced proteome changes in tomato cotyledons. Plant Signaling and Behavior, 2009, 4, 769-772.	2.4	19
33	Salt-induced and Salt-suppressed Proteins in Tomato Leaves. Journal of the American Society for Horticultural Science, 2009, 134, 289-294.	1.0	22