Jiangjuan Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1273092/publications.pdf Version: 2024-02-01

ΙΙΛΝΟΠΙΑΝ SHAO

#	Article	IF	CITATIONS
1	m6A methylation is required for dihydroartemisinin to alleviate liver fibrosis by inducing ferroptosis in hepatic stellate cells. Free Radical Biology and Medicine, 2022, 182, 246-259.	2.9	41
2	Modification of lysine deacetylation regulates curcumolâ€induced necroptosis through autophagy in hepatic stellate cells. Phytotherapy Research, 2022, 36, 2660-2676.	5.8	8
3	Curcumol alleviates liver fibrosis by inducing endoplasmic reticulum stress-mediated necroptosis of hepatic stellate cells through Sirt1/NICD pathway. PeerJ, 2022, 10, e13376.	2.0	16
4	Regulation of hepatic stellate cell contraction and cirrhotic portal hypertension by Wnt/β atenin signalling via interaction with Gli1. British Journal of Pharmacology, 2021, 178, 2246-2265.	5.4	20
5	Curcumol inhibits KLF5-dependent angiogenesis by blocking the ROS/ERK signaling in liver sinusoidal endothelial cells. Life Sciences, 2021, 264, 118696.	4.3	13
6	Autophagy-induced p62 accumulation is required for curcumol to regulate KLF5-mediated angiogenesis in liver sinusoidal endothelial cells. Toxicology, 2021, 452, 152707.	4.2	10
7	Yi-Qi-Jian-Pi Formula Suppresses RIPK1/RIPK3-Complex-Dependent Necroptosis of Hepatocytes Through ROS Signaling and Attenuates Liver Injury in Vivo and in Vitro. Frontiers in Pharmacology, 2021, 12, 658811.	3.5	6
8	Dihydroartemisinin alleviates hepatic fibrosis through inducing ferroptosis in hepatic stellate cells. BioFactors, 2021, 47, 801-818.	5.4	23
9	The mechanism research on the antiâ€liver fibrosis of emodin based on network pharmacology. IUBMB Life, 2021, 73, 1166-1179.	3.4	14
10	Dihydroartemisinin regulates lipid droplet metabolism in hepatic stellate cells by inhibiting IncRNA-H19-induced AMPK signal. Biochemical Pharmacology, 2021, 192, 114730.	4.4	9
11	N6-methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells. Redox Biology, 2021, 47, 102151.	9.0	117
12	Dihydroartemisinin Induces Ferroptosis in HCC by Promoting the Formation of PEBP1/15-LO. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-22.	4.0	28
13	RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy, 2020, 16, 1482-1505.	9.1	243
14	Novel copper complex CTB regulates methionine cycle induced TERT hypomethylation to promote HCC cells senescence via mitochondrial SLC25A26. Cell Death and Disease, 2020, 11, 844.	6.3	18
15	Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication. Signal Transduction and Targeted Therapy, 2020, 5, 280.	17.1	46
16	Iron regulatory protein 2 is required for artemether -mediated anti-hepatic fibrosis through ferroptosis pathway. Free Radical Biology and Medicine, 2020, 160, 845-859.	2.9	55
17	Blockade of periostin-dependent migration and adhesion by curcumol via inhibition of nuclear factor kappa B signaling in hepatic stellate cells. Toxicology, 2020, 440, 152475.	4.2	11
18	ROS-dependent inhibition of the PI3K/Akt/mTOR signaling is required for Oroxylin A to exert anti-inflammatory activity in liver fibrosis. International Immunopharmacology, 2020, 85, 106637.	3.8	25

JIANGJUAN SHAO

#	Article	IF	CITATIONS
19	Curcumol attenuates liver sinusoidal endothelial cell angiogenesis via regulating Clisâ€PROX1â€HlFâ€1α in liver fibrosis. Cell Proliferation, 2020, 53, e12762.	5.3	26
20	The BRD7-P53-SLC25A28 axis regulates ferroptosis in hepatic stellate cells. Redox Biology, 2020, 36, 101619.	9.0	98
21	Novel mitochondrionâ€ŧargeting copper(II) complex induces HK2 malfunction and inhibits glycolysis via Drp1â€mediating mitophagy in HCC. Journal of Cellular and Molecular Medicine, 2020, 24, 3091-3107.	3.6	31
22	Liver regeneration in traditional Chinese medicine: advances and challenges. Regenerative Medicine Research, 2020, 8, 1.	2.5	1
23	Oroxylin a promotes PGC-1α/Mfn2 signaling to attenuate hepatocyte pyroptosis via blocking mitochondrial ROS in alcoholic liver disease. Free Radical Biology and Medicine, 2020, 153, 89-102.	2.9	53
24	A novel IncRNA PLK4 upâ€regulated by talazoparib represses hepatocellular carcinoma progression by promoting YAPâ€mediated cell senescence. Journal of Cellular and Molecular Medicine, 2020, 24, 5304-5316.	3.6	14
25	HIF-1α-upregulated IncRNA-H19 regulates lipid droplet metabolism through the AMPKα pathway in hepatic stellate cells. Life Sciences, 2020, 255, 117818.	4.3	23
26	Docosahexaenoic acid inhibits hepatic stellate cell activation to attenuate liver fibrosis in a PPARÎ ³ -dependent manner. International Immunopharmacology, 2019, 75, 105816.	3.8	16
27	Dihydroartemisinin attenuates alcoholic fatty liver through regulation of lipinâ€1 signaling. IUBMB Life, 2019, 71, 1740-1750.	3.4	23
28	Oroxylin A regulates the turnover of lipid droplet via downregulating adipose triglyceride lipase (ATGL) in hepatic stellate cells. Life Sciences, 2019, 238, 116934.	4.3	16
29	Oroxylin A induces apoptosis of activated hepatic stellate cells through endoplasmic reticulum stress. Apoptosis: an International Journal on Programmed Cell Death, 2019, 24, 905-920.	4.9	20
30	Potential immunomodulatory activities of a lectin from the mushroom Latiporus sulphureus. International Journal of Biological Macromolecules, 2019, 130, 399-406.	7.5	19
31	Periostin in chronic liver diseases: Current research and future perspectives. Life Sciences, 2019, 226, 91-97.	4.3	19
32	Blockade of glycolysis-dependent contraction by oroxylin a via inhibition of lactate dehydrogenase-a in hepatic stellate cells. Cell Communication and Signaling, 2019, 17, 11.	6.5	35
33	TPP-related mitochondrial targeting copper (II) complex induces p53-dependent apoptosis in hepatoma cells through ROS-mediated activation of Drp1. Cell Communication and Signaling, 2019, 17, 149.	6.5	33
34	P53â€dependent induction of ferroptosis is required for artemether to alleviate carbon tetrachlorideâ€induced liver fibrosis and hepatic stellate cell activation. IUBMB Life, 2019, 71, 45-56.	3.4	115
35	Study on the immunomodulatory activity of a novel polysaccharide from the lichen Umbilicaria Esculenta. International Journal of Biological Macromolecules, 2019, 121, 846-851.	7.5	33
36	Oroxylin A prevents alcohol-induced hepatic steatosis through inhibition of hypoxia inducible factor 1alpha. Chemico-Biological Interactions, 2018, 285, 14-20.	4.0	24

Jiangjuan Shao

#	Article	IF	CITATIONS
37	Activation of autophagy is required for Oroxylin A to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation. International Immunopharmacology, 2018, 56, 148-155.	3.8	61
38	Oroxylin A inhibits ethanolâ€induced hepatocyte senescence <i>via</i> Â <scp>YAP</scp> pathway. Cell Proliferation, 2018, 51, e12431.	5.3	35
39	Oroxylin A prevents angiogenesis of LSECs in liver fibrosis via inhibition of YAP/HIFâ€lα signaling. Journal of Cellular Biochemistry, 2018, 119, 2258-2268.	2.6	41
40	Macrophage immunomodulatory activity of the polysaccharide isolated from Collybia radicata mushroom. International Journal of Biological Macromolecules, 2018, 108, 300-306.	7.5	95
41	Lipophagy and liver disease: New perspectives to better understanding and therapy. Biomedicine and Pharmacotherapy, 2018, 97, 339-348.	5.6	45
42	Dihydroartemisinin inhibits ER stress-mediated mitochondrial pathway to attenuate hepatocyte lipoapoptosis via blocking the activation of the PI3K/Akt pathway. Biomedicine and Pharmacotherapy, 2018, 97, 975-984.	5.6	24
43	Curcumol induces RIPK1/RIPK3 complex-dependent necroptosis via JNK1/2-ROS signaling in hepatic stellate cells. Redox Biology, 2018, 19, 375-387.	9.0	114
44	Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy, 2018, 14, 2083-2103.	9.1	296
45	Ligand Activation of PPARÎ ³ by Ligustrazine Suppresses Pericyte Functions of Hepatic Stellate Cells via SMRT-Mediated Transrepression of HIF-1α. Theranostics, 2018, 8, 610-626.	10.0	59
46	Tetramethylpyrazine attenuates sinusoidal angiogenesis via inhibition of hedgehog signaling in liver fibrosis. IUBMB Life, 2017, 69, 115-127.	3.4	36
47	Canonical hedgehog signalling regulates hepatic stellate cellâ€mediated angiogenesis in liver fibrosis. British Journal of Pharmacology, 2017, 174, 409-423.	5.4	61
48	Hepatic stellate cell interferes with NK cell regulation of fibrogenesis via curcumin induced senescence of hepatic stellate cell. Cellular Signalling, 2017, 33, 79-85.	3.6	38
49	Blockade of hedgehog pathway is required for the protective effects of magnesium isoglycyrrhizinate against ethanolâ€induced hepatocyte steatosis and apoptosis. IUBMB Life, 2017, 69, 540-552.	3.4	38
50	Interaction between autophagy and senescence is required for dihydroartemisinin to alleviate liver fibrosis. Cell Death and Disease, 2017, 8, e2886-e2886.	6.3	97
51	Nrf2 induces lipocyte phenotype via a SOCS3-dependent negative feedback loop on JAK2/STAT3 signaling in hepatic stellate cells. International Immunopharmacology, 2017, 49, 203-211.	3.8	25
52	Dihydroartemisinin protects against alcoholic liver injury through alleviating hepatocyte steatosis in a farnesoid X receptor-dependent manner. Toxicology and Applied Pharmacology, 2017, 315, 23-34.	2.8	29
53	Tetramethylpyrazine attenuates carbon tetrachloride-caused liver injury and fibrogenesis and reduces hepatic angiogenesis in rats. Biomedicine and Pharmacotherapy, 2017, 86, 521-530.	5.6	15
54	Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell. Redox Biology, 2017, 11, 322-334.	9.0	81

Jiangjuan Shao

#	Article	IF	CITATIONS
55	Magnesium isoglycyrrhizinate promotes the activated hepatic stellate cells apoptosis via endoplasmic reticulum stress and ameliorates fibrogenesis <i>in vitro</i> and <i>in vivo</i> . BioFactors, 2017, 43, 836-846.	5.4	29
56	Nrf2 Activation Is Required for Ligustrazine to Inhibit Hepatic Steatosis in Alcohol-Preferring Mice and Hepatocytes. Toxicological Sciences, 2017, 155, 432-443.	3.1	29
57	Dihydroartemisinin counteracts fibrotic portal hypertension <i>via</i> farnesoid X receptorâ€dependent inhibition of hepatic stellate cell contraction. FEBS Journal, 2017, 284, 114-133.	4.7	31
58	Inhibition of YAP signaling contributes to senescence of hepatic stellate cells induced by tetramethylpyrazine. European Journal of Pharmaceutical Sciences, 2017, 96, 323-333.	4.0	35
59	Diallyl Trisulfide Suppresses Oxidative Stress-Induced Activation of Hepatic Stellate Cells through Production of Hydrogen Sulfide. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-13.	4.0	30
60	Curcumin inhibits aerobic glycolysis in hepatic stellate cells associated with activation of adenosine monophosphateâ€activated protein kinase. IUBMB Life, 2016, 68, 589-596.	3.4	36
61	Dihydroartemisinin alleviates bile duct ligation-induced liver fibrosis and hepatic stellate cell activation by interfering with the PDCF-I2R/ERK signaling pathway. International Immunopharmacology, 2016, 34, 250-258.	3.8	39
62	Nrf2 knockdown attenuates the ameliorative effects of ligustrazine on hepatic fibrosis by targeting hepatic stellate cell transdifferentiation. Toxicology, 2016, 365, 35-47.	4.2	23
63	Effect of transition metal ions on the thermal degradation of chitosan. Cogent Chemistry, 2016, 2, 1216247.	2.5	20
64	ROS-JNK1/2-dependent activation of autophagy is required for the induction of anti-inflammatory effect of dihydroartemisinin in liver fibrosis. Free Radical Biology and Medicine, 2016, 101, 272-283.	2.9	83
65	Nrf2 Knockdown Disrupts the Protective Effect of Curcumin on Alcohol-Induced Hepatocyte Necroptosis. Molecular Pharmaceutics, 2016, 13, 4043-4053.	4.6	77
66	Dihydroartemisinin prevents liver fibrosis in bile duct ligated rats by inducing hepatic stellate cell apoptosis through modulating the <scp>PI</scp> 3 <scp>K</scp> / <scp>A</scp> kt pathway. IUBMB Life, 2016, 68, 220-231.	3.4	33
67	Dihydroartemisinin restricts hepatic stellate cell contraction via an <scp>FXR‣1PR2</scp> â€dependent mechanism. IUBMB Life, 2016, 68, 376-387.	3.4	29
68	Activation of Fas death receptor pathway and Bid in hepatocytes is involved in saikosaponin D induction of hepatotoxicity. Environmental Toxicology and Pharmacology, 2016, 41, 8-13.	4.0	29
69	Ligustrazine disrupts lipopolysaccharide-activated NLRP3 inflammasome pathway associated with inhibition of Toll-like receptor 4 in hepatocytes. Biomedicine and Pharmacotherapy, 2016, 78, 204-209.	5.6	23
70	Curcumin raises lipid content by Wnt pathway in hepatic stellate cell. Journal of Surgical Research, 2016, 200, 460-466.	1.6	16
71	Curcumin attenuates ethanolâ€induced hepatic steatosis through modulating <scp>N</scp> rf2/ <scp>FXR</scp> signaling in hepatocytes. IUBMB Life, 2015, 67, 645-658.	3.4	72
72	The update on transcriptional regulation of autophagy in normal and pathologic cells: A novel therapeutic target. Biomedicine and Pharmacotherapy, 2015, 74, 17-29.	5.6	17

JIANGJUAN SHAO

#	Article	IF	CITATIONS
73	Ligustrazine prevents alcohol-induced liver injury by attenuating hepatic steatosis and oxidative stress. International Immunopharmacology, 2015, 29, 613-621.	3.8	34
74	Curcumin inhibits cobalt chloride-induced epithelial-to-mesenchymal transition associated with interference with TGF-I²/Smad signaling in hepatocytes. Laboratory Investigation, 2015, 95, 1234-1245.	3.7	52
75	Tetramethylpyrazine prevents ethanol-induced hepatocyte injury via activation of nuclear factor erythroid 2-related factor 2. Life Sciences, 2015, 141, 119-127.	4.3	27
76	Spectroscopic and Molecular Docking Studies of the in Vitro Interaction between Puerarin and Cytochrome P450. Molecules, 2014, 19, 4760-4769.	3.8	11
77	Study on the antithrombotic activity of Umbilicaria esculenta polysaccharide. Carbohydrate Polymers, 2014, 105, 231-236.	10.2	33