Luisa Carvalheiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1271614/publications.pdf Version: 2024-02-01

LIUSA CADVALHEIDO

#	Article	IF	CITATIONS
1	A metabarcoding tool to detect predation of the honeybee Apis mellifera and other wild insects by the invasive Vespa velutina. Journal of Pest Science, 2022, 95, 997-1007.	3.7	15
2	High bee functional diversity buffers crop pollination services against Amazon deforestation. Agriculture, Ecosystems and Environment, 2022, 326, 107777.	5.3	11
3	Positive forest cover effects on coffee yields are consistent across regions. Journal of Applied Ecology, 2022, 59, 330-341.	4.0	12
4	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	3.2	19
5	Network science: Applications for sustainable agroecosystems and food security. Perspectives in Ecology and Conservation, 2022, 20, 79-90.	1.9	7
6	Contrasting patterns from two invasion fronts suggest a niche shift of an invasive predator of native bees. PeerJ, 2022, 10, e13269.	2.0	4
7	Status and trends of pollination services in Amazon agroforestry systems. Agriculture, Ecosystems and Environment, 2022, 335, 108012.	5.3	8
8	Effects of ozone air pollution on crop pollinators and pollination. Global Environmental Change, 2022, 75, 102529.	7.8	9
9	Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210212.	2.6	43
10	Virtual pollination trade uncovers global dependence on biodiversity of developing countries. Science Advances, 2021, 7, .	10.3	24
11	The role of soils on pollination and seed dispersal. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200171.	4.0	17
12	Soil-derived Nature's Contributions to People and their contribution to the UN Sustainable Development Goals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200185.	4.0	15
13	Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography, 2020, 43, 209-221.	4.5	26
14	Forest and connectivity loss simplify tropical pollination networks. Oecologia, 2020, 192, 577-590.	2.0	22
15	Population genomics of Bombus terrestris reveals high but unstructured genetic diversity in a potential glacial refugium. Biological Journal of the Linnean Society, 2020, 129, 259-272.	1.6	10
16	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	10.3	524
17	Ensuring access to high-quality resources reduces the impacts of heat stress on bees. Scientific Reports, 2019, 9, 12596.	3.3	46
18	Pollinator restoration in Brazilian ecosystems relies on a small but phylogenetically-diverse set of plant families. Scientific Reports, 2019, 9, 17383.	3.3	20

LUISA CARVALHEIRO

#	Article	IF	CITATIONS
19	Relatório temático sobre polinização, polinizadores e produção de alimentos no Brasil. , 2019, , .		37
20	Anthropogenic disturbance of tropical forests threatens pollination services to açaÃ-palm in the Amazon river delta. Journal of Applied Ecology, 2018, 55, 1725-1736.	4.0	54
21	Crop fertilization affects pollination service provision – Common bean as a case study. PLoS ONE, 2018, 13, e0204460.	2.5	30
22	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	7.1	401
23	Impact of pollen resources drift on common bumblebees in <scp>NW</scp> Europe. Global Change Biology, 2017, 23, 68-76.	9.5	36
24	Historical changes in the importance of climate and land use as determinants of Dutch pollinator distributions. Journal of Biogeography, 2017, 44, 696-707.	3.0	23
25	The potential indirect effects among plants via shared hummingbird pollinators are structured by phenotypic similarity. Ecology, 2017, 98, 1849-1858.	3.2	41
26	A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 2017, 23, 4946-4957.	9.5	259
27	Exotic plants growing in crop field margins provide little support to mango crop flower visitors. Agriculture, Ecosystems and Environment, 2017, 250, 72-80.	5.3	10
28	The effects of soil eutrophication propagate to higher trophic levels. Global Ecology and Biogeography, 2017, 26, 18-30.	5.8	60
29	Influence of plant–pollinator interactions on the assembly of plant and hummingbird communities. Journal of Ecology, 2017, 105, 332-344.	4.0	45
30	Beekeeping practices and geographic distance, not land use, drive gene flow across tropical bees. Molecular Ecology, 2016, 25, 5345-5358.	3.9	66
31	Functional traits help to explain half-century long shifts in pollinator distributions. Scientific Reports, 2016, 6, 24451.	3.3	49
32	Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science, 2016, 351, 388-391.	12.6	342
33	Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 146-151.	7.1	618
34	Susceptibility of pollinators to ongoing landscape changes depends on landscape history. Diversity and Distributions, 2015, 21, 1129-1140.	4.1	43
35	EDITOR'S CHOICE: REVIEW: Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 2015, 52, 1436-1444.	4.0	136
36	The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150294.	2.6	120

LUISA CARVALHEIRO

#	Article	IF	CITATIONS
37	Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type. Ecology and Evolution, 2015, 5, 4426-4436.	1.9	9
38	Responses of bees to habitat loss in fragmented landscapes of Brazilian Atlantic Rainforest. Landscape Ecology, 2015, 30, 2067-2078.	4.2	77
39	Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications, 2015, 6, 7414.	12.8	656
40	Ecological specialization matters: longâ€ŧerm trends in butterfly species richness and assemblage composition depend on multiple functional traits. Diversity and Distributions, 2015, 21, 792-802.	4.1	95
41	Pollinator conservation—the difference between managing for pollination services and preserving pollinator diversity. Current Opinion in Insect Science, 2015, 12, 93-101.	4.4	118
42	Short-Term Effect of Nutrient Availability and Rainfall Distribution on Biomass Production and Leaf Nutrient Content of Savanna Tree Species. PLoS ONE, 2014, 9, e92619.	2.5	32
43	The potential for indirect effects between coâ€flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecology Letters, 2014, 17, 1389-1399.	6.4	172
44	Tree species from different functional groups respond differently to environmental changes during establishment. Oecologia, 2014, 174, 1345-1357.	2.0	34
45	Economic and ecological implications of geographic bias in pollinator ecology in the light of pollinator declines. Oikos, 2014, 123, 401-407.	2.7	79
46	From research to action: enhancing crop yield through wild pollinators. Frontiers in Ecology and the Environment, 2014, 12, 439-447.	4.0	363
47	On the influence of physical parameterisations and domains configuration in the simulation of an extreme precipitation event. Dynamics of Atmospheres and Oceans, 2014, 68, 35-55.	1.8	10
48	Phylogenetic tree shape and the structure of mutualistic networks. Journal of Ecology, 2014, 102, 1234-1243.	4.0	14
49	Pollination and biological control research: are we neglecting two billion smallholders. Agriculture and Food Security, 2014, 3, .	4.2	39
50	Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 2013, 339, 1608-1611.	12.6	1,767
51	A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters, 2013, 16, 584-599.	6.4	875
52	Species richness declines and biotic homogenisation have slowed down for <scp>NW</scp> â€European pollinators and plants. Ecology Letters, 2013, 16, 870-878.	6.4	305
53	Why Urban Citizens in Developing Countries Use Traditional Medicines: The Case of Suriname. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-13.	1.2	71
54	Corrigendum to Carvalheiro <i>etÂal</i> . (). Ecology Letters, 2013, 16, 1416-1417.	6.4	3

LUISA CARVALHEIRO

#	Article	IF	CITATIONS
55	Fit-for-Purpose: Species Distribution Model Performance Depends on Evaluation Criteria – Dutch Hoverflies as a Case Study. PLoS ONE, 2013, 8, e63708.	2.5	207
56	Temporal-Spatial Dynamics in Orthoptera in Relation to Nutrient Availability and Plant Species Richness. PLoS ONE, 2013, 8, e71736.	2.5	11
57	Creating patches of native flowers facilitates crop pollination in large agricultural fields: mango as a case study. Journal of Applied Ecology, 2012, 49, 1373-1383.	4.0	128
58	Natural and within-farmland biodiversity enhances crop productivity. Ecology Letters, 2011, 14, 251-259.	6.4	248
59	Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters, 2011, 14, 1062-1072.	6.4	681
60	Pollination services decline with distance from natural habitat even in biodiversityâ€rich areas. Journal of Applied Ecology, 2010, 47, 810-820.	4.0	201
61	Diet breadth influences how the impact of invasive plants is propagated through food webs. Ecology, 2010, 91, 1063-1074.	3.2	47
62	Apparent competition can compromise the safety of highly specific biocontrol agents. Ecology Letters, 2008, 11, 690-700.	6.4	97
63	Pollinator networks, alien species and the conservation of rare plants: <i> Trinia glauca</i> as a case study. Journal of Applied Ecology, 2008, 45, 1419-1427.	4.0	83
64	The conservation of ecological interactions , 2007, , 226-244.		24
65	Importance of biotic pollination varies across common bean cultivars. Journal of Applied Entomology, 0, , .	1.8	2
66	Differential behavioral responses of benthic and nektonic tadpoles to predation at varying water depths. Canadian Journal of Zoology, 0, , .	1.0	0