
## Paola Chiarugi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1271277/publications.pdf Version: 2024-02-01



ΡλΟΙΑ CΗΙΑΡΙΙΟ

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Anoikis molecular pathways and its role in cancer progression. Biochimica Et Biophysica Acta -<br>Molecular Cell Research, 2013, 1833, 3481-3498.                                                                         | 4.1  | 840       |
| 2  | Rac and Rho GTPases in cancer cell motility control. Cell Communication and Signaling, 2010, 8, 23.                                                                                                                       | 6.5  | 493       |
| 3  | Reciprocal Activation of Prostate Cancer Cells and Cancer-Associated Fibroblasts Stimulates<br>Epithelial-Mesenchymal Transition and Cancer Stemness. Cancer Research, 2010, 70, 6945-6956.                               | 0.9  | 493       |
| 4  | Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer and Metastasis Reviews, 2012, 31, 195-208.                                                                          | 5.9  | 448       |
| 5  | Reciprocal Metabolic Reprogramming through Lactate Shuttle Coordinately Influences Tumor-Stroma<br>Interplay. Cancer Research, 2012, 72, 5130-5140.                                                                       | 0.9  | 438       |
| 6  | Anoikis: A necessary death program for anchorage-dependent cells. Biochemical Pharmacology, 2008,<br>76, 1352-1364.                                                                                                       | 4.4  | 435       |
| 7  | Reactive oxygen species as essential mediators of cell adhesion. Journal of Cell Biology, 2003, 161, 933-944.                                                                                                             | 5.2  | 406       |
| 8  | Intracellular Reactive Oxygen Species Activate Src Tyrosine Kinase during Cell Adhesion and Anchorage-Dependent Cell Growth. Molecular and Cellular Biology, 2005, 25, 6391-6403.                                         | 2.3  | 405       |
| 9  | Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends in Biochemical Sciences, 2003, 28, 509-514.                                                                 | 7.5  | 311       |
| 10 | Cancer associated fibroblasts: the dark side of the coin. American Journal of Cancer Research, 2011, 1, 482-97.                                                                                                           | 1.4  | 269       |
| 11 | Metastasis: cancer cell's escape from oxidative stress. Cancer and Metastasis Reviews, 2010, 29, 351-378.                                                                                                                 | 5.9  | 266       |
| 12 | Lactate: A Metabolic Driver in the Tumour Landscape. Trends in Biochemical Sciences, 2019, 44, 153-166.                                                                                                                   | 7.5  | 263       |
| 13 | Oxidative Stress, Tumor Microenvironment, and Metabolic Reprogramming: A Diabolic Liaison.<br>International Journal of Cell Biology, 2012, 2012, 1-8.                                                                     | 2.5  | 258       |
| 14 | Microenvironment and tumor cell plasticity: An easy way out. Cancer Letters, 2013, 341, 80-96.                                                                                                                            | 7.2  | 214       |
| 15 | Dual Role of Mitochondrial Reactive Oxygen Species in Hypoxia Signaling: Activation of Nuclear<br>Factor-κB via c-SRC– and Oxidant-Dependent Cell Death. Cancer Research, 2007, 67, 7368-7377.                            | 0.9  | 204       |
| 16 | Cancer Associated Fibroblasts Exploit Reactive Oxygen Species Through a Proinflammatory Signature<br>Leading to Epithelial Mesenchymal Transition and Stemness. Antioxidants and Redox Signaling, 2011, 14,<br>2361-2371. | 5.4  | 186       |
| 17 | EMT and Oxidative Stress: A Bidirectional Interplay Affecting Tumor Malignancy. Antioxidants and Redox Signaling, 2012, 16, 1248-1263.                                                                                    | 5.4  | 185       |
| 18 | Increased Lactate Secretion by Cancer Cells Sustains Non-cell-autonomous Adaptive Resistance to MET<br>and EGFR Targeted Therapies. Cell Metabolism, 2018, 28, 848-865.e6.                                                | 16.2 | 184       |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mesenchymal Stem Cells are Recruited and Activated into Carcinoma-Associated Fibroblasts by Prostate Cancer Microenvironment-Derived TGF-β1. Stem Cells, 2016, 34, 2536-2547.                                                                    | 3.2  | 169       |
| 20 | Two Vicinal Cysteines Confer a Peculiar Redox Regulation to Low Molecular Weight Protein Tyrosine<br>Phosphatase in Response to Platelet-derived Growth Factor Receptor Stimulation. Journal of<br>Biological Chemistry, 2001, 276, 33478-33487. | 3.4  | 166       |
| 21 | Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer. Oncogene, 2019, 38, 5339-5355.                                                                                               | 5.9  | 163       |
| 22 | Protein Tyrosine Phosphorylation and Reversible Oxidation: Two Cross-Talking Posttranslation<br>Modifications. Antioxidants and Redox Signaling, 2007, 9, 1-24.                                                                                  | 5.4  | 161       |
| 23 | Redox Regulation of β-Actin during Integrin-mediated Cell Adhesion. Journal of Biological Chemistry, 2006, 281, 22983-22991.                                                                                                                     | 3.4  | 151       |
| 24 | HIF-1α stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radical Biology and Medicine, 2011, 51, 893-904.                                                               | 2.9  | 146       |
| 25 | ReviewPTPs versus PTKs: The redox side of the coin. Free Radical Research, 2005, 39, 353-364.                                                                                                                                                    | 3.3  | 142       |
| 26 | Tumor microenvironment: Bone marrow-mesenchymal stem cells as key players. Biochimica Et<br>Biophysica Acta: Reviews on Cancer, 2013, 1836, 321-335.                                                                                             | 7.4  | 141       |
| 27 | Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer. Nature Genetics, 2018, 50, 219-228.                                                                                                   | 21.4 | 139       |
| 28 | Carbonic anhydrase IX from cancer-associated fibroblasts drives epithelial-mesenchymal transition in prostate carcinoma cells. Cell Cycle, 2013, 12, 1791-1801.                                                                                  | 2.6  | 136       |
| 29 | Redox signalling in anchorage-dependent cell growth. Cellular Signalling, 2007, 19, 672-682.                                                                                                                                                     | 3.6  | 121       |
| 30 | EphA2 Reexpression Prompts Invasion of Melanoma Cells Shifting from Mesenchymal to Amoeboid-like<br>Motility Style. Cancer Research, 2009, 69, 2072-2081.                                                                                        | 0.9  | 120       |
| 31 | MYC Mediates Large Oncosome-Induced Fibroblast Reprogramming in Prostate Cancer. Cancer Research, 2017, 77, 2306-2317.                                                                                                                           | 0.9  | 119       |
| 32 | LMW-PTP Is a Negative Regulator of Insulin-Mediated Mitotic and Metabolic Signalling. Biochemical and Biophysical Research Communications, 1997, 238, 676-682.                                                                                   | 2.1  | 106       |
| 33 | β-adrenoceptors are upregulated in human melanoma and their activation releases pro-tumorigenic cytokines and metalloproteases in melanoma cell lines. Laboratory Investigation, 2013, 93, 279-290.                                              | 3.7  | 104       |
| 34 | Metabolic shift toward oxidative phosphorylation in docetaxel resistant prostate cancer cells.<br>Oncotarget, 2016, 7, 61890-61904.                                                                                                              | 1.8  | 103       |
| 35 | 5-Fluorouracil resistant colon cancer cells are addicted to OXPHOS to survive and enhance stem-like traits. Oncotarget, 2015, 6, 41706-41721.                                                                                                    | 1.8  | 103       |
| 36 | Senescent stroma promotes prostate cancer progression: The role of miRâ€210. Molecular Oncology,<br>2014, 8, 1729-1746.                                                                                                                          | 4.6  | 102       |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Src redox regulation: Again in the front line. Free Radical Biology and Medicine, 2010, 49, 516-527.                                                                                                                        | 2.9 | 101       |
| 38 | Targeting the Metabolic Reprogramming That Controls Epithelial-to-Mesenchymal Transition in Aggressive Tumors. Frontiers in Oncology, 2017, 7, 40.                                                                          | 2.8 | 101       |
| 39 | LMW-PTP is a positive regulator of tumor onset and growth. Oncogene, 2004, 23, 3905-3914.                                                                                                                                   | 5.9 | 98        |
| 40 | Kinase-Dependent and -Independent Roles of EphA2 in the Regulation of Prostate Cancer Invasion and<br>Metastasis. American Journal of Pathology, 2009, 174, 1492-1503.                                                      | 3.8 | 96        |
| 41 | The role of Cys12, Cys17 and Arg18 in the catalytic mechanism of low-Mr cytosolic phosphotyrosine protein phosphatase. FEBS Journal, 1993, 214, 647-657.                                                                    | 0.2 | 94        |
| 42 | PDGF receptor as a specific in vivo target for lowMrphosphotyrosine protein phosphatase. FEBS<br>Letters, 1995, 372, 49-53.                                                                                                 | 2.8 | 94        |
| 43 | Integrin-Mediated Cell Adhesion and Spreading Engage Different Sources of Reactive Oxygen Species.<br>Antioxidants and Redox Signaling, 2007, 9, 469-481.                                                                   | 5.4 | 93        |
| 44 | Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer<br>progression. BMC Cancer, 2014, 14, 154.                                                                                         | 2.6 | 92        |
| 45 | Metabolic exchanges within tumor microenvironment. Cancer Letters, 2016, 380, 272-280.                                                                                                                                      | 7.2 | 87        |
| 46 | Targeting stromal-induced pyruvate kinase M2 nuclear translocation impairs OXPHOS and prostate cancer metastatic spread. Oncotarget, 2015, 6, 24061-24074.                                                                  | 1.8 | 84        |
| 47 | Metabolic reprogramming identifies the most aggressive lesions at early phases of hepatic carcinogenesis. Oncotarget, 2016, 7, 32375-32393.                                                                                 | 1.8 | 83        |
| 48 | miR-155 Drives Metabolic Reprogramming of ER+ Breast Cancer Cells Following Long-Term Estrogen<br>Deprivation and Predicts Clinical Response to Aromatase Inhibitors. Cancer Research, 2016, 76,<br>1615-1626.              | 0.9 | 82        |
| 49 | Norepinephrine promotes tumor microenvironment reactivity through β3-adrenoreceptors during melanoma progression. Oncotarget, 2015, 6, 4615-4632.                                                                           | 1.8 | 82        |
| 50 | Redox-Based Escape Mechanism from Death: The Cancer Lesson. Antioxidants and Redox Signaling, 2009, 11, 2791-2806.                                                                                                          | 5.4 | 81        |
| 51 | The Low M r Protein-tyrosine Phosphatase Is Involved in Rho-mediated Cytoskeleton Rearrangement<br>after Integrin and Platelet-derived Growth Factor Stimulation. Journal of Biological Chemistry, 2000,<br>275, 4640-4646. | 3.4 | 80        |
| 52 | EphrinA1 Activates a Src/Focal Adhesion Kinase-mediated Motility Response Leading to Rho-dependent<br>Actino/Myosin Contractility. Journal of Biological Chemistry, 2007, 282, 19619-19628.                                 | 3.4 | 78        |
| 53 | Time-Dependent Stabilization of Hypoxia Inducible Factor-1α by Different Intracellular Sources of<br>Reactive Oxygen Species. PLoS ONE, 2012, 7, e38388.                                                                    | 2.5 | 77        |
| 54 | Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells. Cell<br>Communication and Signaling, 2014, 12, 24.                                                                              | 6.5 | 77        |

| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Sphingosine 1-phosphate increases glucose uptake through trans-activation of insulin receptor.<br>Cellular and Molecular Life Sciences, 2009, 66, 3207-3218.                                                                                                       | 5.4  | 76        |
| 56 | Inhibitory Effect of Full-Length Human Endostatin on in Vitro Angiogenesis. Biochemical and<br>Biophysical Research Communications, 1999, 263, 340-345.                                                                                                            | 2.1  | 75        |
| 57 | The Src and Signal Transducers and Activators of Transcription Pathways As Specific Targets for Low<br>Molecular Weight Phosphotyrosine-protein Phosphatase in Platelet-derived Growth Factor Signaling.<br>Journal of Biological Chemistry, 1998, 273, 6776-6785. | 3.4  | 72        |
| 58 | Inflammatory response in human skeletal muscle cells: CXCL10 as a potential therapeutic target.<br>European Journal of Cell Biology, 2012, 91, 139-149.                                                                                                            | 3.6  | 71        |
| 59 | Reprogramming of Amino Acid Transporters to Support Aspartate and Glutamate Dependency Sustains<br>Endocrine Resistance in Breast Cancer. Cell Reports, 2019, 28, 104-118.e8.                                                                                      | 6.4  | 67        |
| 60 | EphrinA1 Repulsive Response Is Regulated by an EphA2 Tyrosine Phosphatase. Journal of Biological<br>Chemistry, 2005, 280, 34008-34018.                                                                                                                             | 3.4  | 65        |
| 61 | Beta-catenin interacts with low-molecular-weight protein tyrosine phosphatase leading to cadherin-mediated cell-cell adhesion increase. Cancer Research, 2002, 62, 6489-99.                                                                                        | 0.9  | 65        |
| 62 | The lowMrphosphotyrosine protein phosphatase behaves differently when phosphorylated at Tyr131or<br>Tyr132by Src kinase. FEBS Letters, 1999, 456, 73-78.                                                                                                           | 2.8  | 63        |
| 63 | EphA2 Induces Metastatic Growth Regulating Amoeboid Motility and Clonogenic Potential in Prostate<br>Carcinoma Cells. Molecular Cancer Research, 2011, 9, 149-160.                                                                                                 | 3.4  | 63        |
| 64 | miR-205 Hinders the Malignant Interplay Between Prostate Cancer Cells and Associated Fibroblasts.<br>Antioxidants and Redox Signaling, 2014, 20, 1045-1059.                                                                                                        | 5.4  | 63        |
| 65 | Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma. Journal of Hepatology, 2021, 74, 1373-1385.                                                                                                                  | 3.7  | 60        |
| 66 | c-Src Activates both STAT1 and STAT3 in PDGF-Stimulated NIH3T3 Cells. Biochemical and Biophysical Research Communications, 1997, 239, 493-497.                                                                                                                     | 2.1  | 58        |
| 67 | From anchorage dependent proliferation to survival: Lessons from redox signalling. IUBMB Life, 2008, 60, 301-307.                                                                                                                                                  | 3.4  | 58        |
| 68 | Tumor Microenvironment and Metabolism in Prostate Cancer. Seminars in Oncology, 2014, 41, 267-280.                                                                                                                                                                 | 2.2  | 58        |
| 69 | Bone marrowâ€derived mesenchymal stem cells promote invasiveness and transendothelial migration of osteosarcoma cells via a mesenchymal to amoeboid transition. Molecular Oncology, 2018, 12, 659-676.                                                             | 4.6  | 57        |
| 70 | Angiopoietin-like 7, a novel pro-angiogenetic factor over-expressed in cancer. Angiogenesis, 2014, 17,<br>881-896.                                                                                                                                                 | 7.2  | 55        |
| 71 | Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation. Oncotarget, 2015, 6, 31441-31460.                                                                    | 1.8  | 55        |
| 72 | Globular adiponectin induces differentiation and fusion of skeletal muscle cells. Cell Research, 2009, 19, 584-597.                                                                                                                                                | 12.0 | 53        |

| #  | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Redox Circuitries Driving Src Regulation. Antioxidants and Redox Signaling, 2014, 20, 2011-2025.                                                                                                                                                                   | 5.4 | 52        |
| 74 | Zoledronic acid impairs stromal reactivity by inhibiting M2-macrophages polarization and prostate cancer-associated fibroblasts. Oncotarget, 2017, 8, 118-132.                                                                                                     | 1.8 | 52        |
| 75 | Lactate Rewires Lipid Metabolism and Sustains a Metabolic–Epigenetic Axis in Prostate Cancer. Cancer<br>Research, 2022, 82, 1267-1282.                                                                                                                             | 0.9 | 52        |
| 76 | β <sub>3</sub> â€Adrenoceptor as a potential immunoâ€suppressor agent in melanoma. British Journal of<br>Pharmacology, 2019, 176, 2509-2524.                                                                                                                       | 5.4 | 49        |
| 77 | The Molecular Basis of the Differing Kinetic Behavior of the Two Low Molecular Mass<br>Phosphotyrosine Protein Phosphatase Isoforms. Journal of Biological Chemistry, 1996, 271, 2604-2607.                                                                        | 3.4 | 48        |
| 78 | Mitochondrial Oxidative Stress due to Complex I Dysfunction Promotes Fibroblast Activation and Melanoma Cell Invasiveness. Journal of Signal Transduction, 2012, 2012, 1-10.                                                                                       | 2.0 | 48        |
| 79 | Chronic Resveratrol Treatment Ameliorates Cell Adhesion and Mitigates the Inflammatory Phenotype<br>in Senescent Human Fibroblasts. Journals of Gerontology - Series A Biological Sciences and Medical<br>Sciences, 2013, 68, 371-381.                             | 3.6 | 48        |
| 80 | Aspartic-129 is an essential residue in the catalytic mechanism of the lowMrphosphotyrosine protein phosphatase. FEBS Letters, 1994, 350, 328-332.                                                                                                                 | 2.8 | 47        |
| 81 | Cancer-associated fibroblasts and macrophages. Oncolmmunology, 2013, 2, e25563.                                                                                                                                                                                    | 4.6 | 47        |
| 82 | Stromal fibroblasts synergize with hypoxic oxidative stress to enhance melanoma aggressiveness.<br>Cancer Letters, 2012, 324, 31-41.                                                                                                                               | 7.2 | 46        |
| 83 | Systemic sclerosis endothelial cells recruit and activate dermal fibroblasts by induction of a connective tissue growth factor (CCN2)/transforming growth factor β–dependent mesenchymalâ€toâ€mesenchymal transition. Arthritis and Rheumatism, 2013, 65, 258-269. | 6.7 | 46        |
| 84 | Low Molecular Weight Protein-tyrosine Phosphatase Tyrosine Phosphorylation by c-Src during<br>Platelet-derived Growth Factor-induced Mitogenesis Correlates with Its Subcellular Targeting.<br>Journal of Biological Chemistry, 1998, 273, 32522-32527.            | 3.4 | 45        |
| 85 | Adiponectin in health and diseases: from metabolic syndrome to tissue regeneration. Expert Opinion on Therapeutic Targets, 2010, 14, 193-206.                                                                                                                      | 3.4 | 45        |
| 86 | Redox Molecular Machines Involved in Tumor Progression. Antioxidants and Redox Signaling, 2013, 19, 1828-1845.                                                                                                                                                     | 5.4 | 44        |
| 87 | LowMrPhosphotyrosine Protein Phosphatase Interacts with the PDGF Receptor Directly via Its Catalytic Site. Biochemical and Biophysical Research Communications, 1996, 219, 21-25.                                                                                  | 2.1 | 43        |
| 88 | The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style. Oncotarget, 2014, 5, 1538-1553.                                                                                   | 1.8 | 42        |
| 89 | Nutrient Exploitation within the Tumor–Stroma Metabolic Crosstalk. Trends in Cancer, 2016, 2,<br>736-746.                                                                                                                                                          | 7.4 | 41        |
| 90 | In vivo inactivation of phosphotyrosine protein phosphatases by nitric oxide. FEBS Letters, 1995, 374, 249-252.                                                                                                                                                    | 2.8 | 40        |

| #   | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Insight into the Role of Low Molecular Weight Phosphotyrosine Phosphatase (LMW-PTP) on<br>Platelet-derived Growth Factor Receptor (PDGF-r) Signaling. Journal of Biological Chemistry, 2002,<br>277, 37331-37338.                      | 3.4 | 39        |
| 92  | Mitochondrial Redox Hubs as Promising Targets for Anticancer Therapy. Frontiers in Oncology, 2020, 10, 256.                                                                                                                            | 2.8 | 39        |
| 93  | New perspectives in PDGF receptor downregulation: the main role of phosphotyrosine phosphatases.<br>Journal of Cell Science, 2002, 115, 2219-2232.                                                                                     | 2.0 | 39        |
| 94  | The Redox Regulation of LMW-PTP During Cell Proliferation or Growth Inhibition. IUBMB Life, 2001, 52, 55-59.                                                                                                                           | 3.4 | 38        |
| 95  | miR-27a is a master regulator of metabolic reprogramming and chemoresistance in colorectal cancer.<br>British Journal of Cancer, 2020, 122, 1354-1366.                                                                                 | 6.4 | 38        |
| 96  | EphA2-mediated mesenchymal–amoeboid transition induced by endothelial progenitor cells enhances<br>metastatic spread due to cancer-associated fibroblasts. Journal of Molecular Medicine, 2013, 91, 103-115.                           | 3.9 | 37        |
| 97  | Low Molecular Weight Protein-tyrosine Phosphatase Is Involved in Growth Inhibition during Cell<br>Differentiation. Journal of Biological Chemistry, 2001, 276, 49156-49163.                                                            | 3.4 | 36        |
| 98  | Nutritional Exchanges Within Tumor Microenvironment: Impact for Cancer Aggressiveness. Frontiers in Oncology, 2020, 10, 396.                                                                                                           | 2.8 | 35        |
| 99  | The metabolic gene HAO2 is downregulated in hepatocellular carcinoma and predicts metastasis and poor survival. Journal of Hepatology, 2016, 64, 891-898.                                                                              | 3.7 | 34        |
| 100 | <i><sup>î2</sup></i> 3-Adrenoreceptors Control Mitochondrial Dormancy in Melanoma and Embryonic Stem Cells.<br>Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-10.                                                            | 4.0 | 34        |
| 101 | Reactive oxygen species as mediators of cell adhesion. Italian Journal of Biochemistry, 2003, 52, 28-32.                                                                                                                               | 0.3 | 34        |
| 102 | New perspectives in PDGF receptor downregulation: the main role of phosphotyrosine phosphatases.<br>Journal of Cell Science, 2002, 115, 2219-32.                                                                                       | 2.0 | 33        |
| 103 | LMW-PTP Exerts a Differential Regulation on PDGF- and Insulin-Mediated Signaling. Biochemical and Biophysical Research Communications, 2000, 270, 564-569.                                                                             | 2.1 | 32        |
| 104 | Lymphocyte Function-associated Antigen-1-mediated T Cell Adhesion Is Impaired by Low Molecular<br>Weight Phosphotyrosine Phosphatase-dependent Inhibition of FAK Activity. Journal of Biological<br>Chemistry, 2003, 278, 36763-36776. | 3.4 | 30        |
| 105 | Src redox regulation: there is more than meets the eye. Molecules and Cells, 2008, 26, 329-37.                                                                                                                                         | 2.6 | 30        |
| 106 | Differential role of four cysteines on the activity of a lowMrphosphotyrosine protein phosphatase.<br>FEBS Letters, 1992, 310, 9-12.                                                                                                   | 2.8 | 29        |
| 107 | Globular Adiponectin Activates Motility and Regenerative Traits of Muscle Satellite Cells. PLoS ONE, 2012, 7, e34782.                                                                                                                  | 2.5 | 29        |
| 108 | Redox-dependent and ligand-independenttrans-activation of insulin receptor by globular adiponectin.<br>Hepatology, 2007, 46, 130-139.                                                                                                  | 7.3 | 28        |

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Globular Adiponectin as a Complete Mesoangioblast Regulator: Role in Proliferation, Survival,<br>Motility, and Skeletal Muscle Differentiation. Molecular Biology of the Cell, 2010, 21, 848-859.                                 | 2.1  | 28        |
| 110 | Down-Regulation of SOX2 Underlies the Inhibitory Effects of the Triphenylmethane Gentian Violet on<br>Melanoma Cell Self-Renewal and Survival. Journal of Investigative Dermatology, 2016, 136, 2059-2069.                        | 0.7  | 28        |
| 111 | Multiwalled carbon nanotubes for drug delivery: Efficiency related to length and incubation time.<br>International Journal of Pharmaceutics, 2017, 521, 69-72.                                                                    | 5.2  | 27        |
| 112 | Oxidation and inactivation of low molecular weight protein tyrosine phosphatase by the anticancer drug Aplidin. International Journal of Cancer, 2006, 118, 2082-2088.                                                            | 5.1  | 26        |
| 113 | Targeting the receptor tyrosine kinase RET in combination with aromatase inhibitors in ER positive breast cancer xenografts. Oncotarget, 2016, 7, 80543-80553.                                                                    | 1.8  | 26        |
| 114 | Redox Regulation of Ephrin/Integrin Cross-Talk. Cell Adhesion and Migration, 2007, 1, 33-42.                                                                                                                                      | 2.7  | 24        |
| 115 | Lactate in Sarcoma Microenvironment: Much More than just a Waste Product. Cells, 2020, 9, 510.                                                                                                                                    | 4.1  | 24        |
| 116 | 22Â:Â6 <i>n</i> -3 DHA inhibits differentiation of prostate fibroblasts into myofibroblasts and tumorigenesis. British Journal of Nutrition, 2012, 108, 2129-2137.                                                                | 2.3  | 23        |
| 117 | Targeted DNA oxidation by LSD1–SMAD2/3 primes TGF-β1/ EMT genes for activation or repression. Nucleic Acids Research, 2020, 48, 8943-8958.                                                                                        | 14.5 | 23        |
| 118 | Glucose Metabolic Reprogramming of ER Breast Cancer in Acquired Resistance to the CDK4/6 Inhibitor<br>Palbociclib+. Cells, 2020, 9, 668.                                                                                          | 4.1  | 23        |
| 119 | Low Molecular Weight Protein-tyrosine Phosphatase Controls the Rate and the Strength of NIH-3T3<br>Cells Adhesion through Its Phosphorylation on Tyrosine 131 or 132. Journal of Biological Chemistry,<br>2000, 275, 37619-37627. | 3.4  | 22        |
| 120 | Metabolic implication of tumor:stroma crosstalk in breast cancer. Journal of Molecular Medicine, 2014, 92, 117-126.                                                                                                               | 3.9  | 21        |
| 121 | Stromalâ€induced downregulation of miRâ€1247 promotes prostate cancer malignancy. Journal of<br>Cellular Physiology, 2019, 234, 8274-8285.                                                                                        | 4.1  | 21        |
| 122 | Treatment with Cannabinoids as a Promising Approach for Impairing Fibroblast Activation and Prostate Cancer Progression. International Journal of Molecular Sciences, 2020, 21, 787.                                              | 4.1  | 21        |
| 123 | Etoposide-Bevacizumab a new strategy against human melanoma cells expressing stem-like traits.<br>Oncotarget, 2016, 7, 51138-51149.                                                                                               | 1.8  | 21        |
| 124 | Acylphosphatase is involved in differentiation of K562 cells. Cell Death and Differentiation, 1997, 4, 334-340.                                                                                                                   | 11.2 | 20        |
| 125 | A novel redox-based switch: LMW-PTP oxidation enhances Grb2 binding and leads to ERK activation.<br>Biochemical and Biophysical Research Communications, 2006, 348, 367-373.                                                      | 2.1  | 20        |
| 126 | ERMP1, a novel potential oncogene involved in UPR and oxidative stress defense, is highly expressed in human cancer. Oncotarget, 2016, 7, 63596-63610.                                                                            | 1.8  | 20        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The role of Cys-17 in the pyridoxal $5\hat{a}\in^2$ -phosphate inhibition of the bovine liver low phosphotyrosine protein phosphatase. BBA - Proteins and Proteomics, 1993, 1161, 216-222.                               | 2.1 | 19        |
| 128 | Anchorage-Dependent Cell Growth: Tyrosine Kinases and Phosphatases Meet Redox Regulation.<br>Antioxidants and Redox Signaling, 2005, 7, 578-592.                                                                         | 5.4 | 19        |
| 129 | The "click-on-tube―approach for the production of efficient drug carriers based on oxidized multi-walled carbon nanotubes. Journal of Materials Chemistry B, 2016, 4, 3823-3831.                                         | 5.8 | 19        |
| 130 | The effects of CA IX catalysis products within tumor microenvironment. Cell Communication and Signaling, 2013, 11, 81.                                                                                                   | 6.5 | 18        |
| 131 | Cloning and expression of the cDNA coding for the erythrocyte isoenzyme of human acylphosphatase.<br>FEBS Letters, 1995, 367, 145-148.                                                                                   | 2.8 | 16        |
| 132 | Differential Migration of Acylphosphatase Isoenzymes from Cytoplasm to Nucleus during Apoptotic<br>Cell Death. Biochemical and Biophysical Research Communications, 1997, 231, 717-721.                                  | 2.1 | 15        |
| 133 | The inhibitory effect of the 5′ untranslated region of muscle acylphosphatase mRNA on protein expression is relieved during cell differentiation. FEBS Letters, 2000, 473, 42-46.                                        | 2.8 | 12        |
| 134 | Multivalent presentation of a hydrolytically stable GM3 lactone mimetic as modulator of melanoma cells motility and adhesion. Bioorganic and Medicinal Chemistry, 2013, 21, 2756-2763.                                   | 3.0 | 12        |
| 135 | Lipoyl-Homotaurine Derivative (ADM_12) Reverts Oxaliplatin-Induced Neuropathy and Reduces Cancer<br>Cells Malignancy by Inhibiting Carbonic Anhydrase IX (CAIX). Journal of Medicinal Chemistry, 2017, 60,<br>9003-9011. | 6.4 | 12        |
| 136 | Redox Regulation of Ephrin/Integrin Cross-Talk. Cell Adhesion and Migration, 2007, 1, 33-42.                                                                                                                             | 2.7 | 12        |
| 137 | Endocannabinoid System and Tumour Microenvironment: New Intertwined Connections for Anticancer Approaches. Cells, 2021, 10, 3396.                                                                                        | 4.1 | 12        |
| 138 | Redox Regulation of Nonmuscle Myosin Heavy Chain during Integrin Engagement. Journal of Signal<br>Transduction, 2012, 2012, 1-9.                                                                                         | 2.0 | 11        |
| 139 | Redox regulation of ephrin/integrin cross-talk. Cell Adhesion and Migration, 2007, 1, 33-42.                                                                                                                             | 2.7 | 11        |
| 140 | The 5′-untranslated region of the human muscle acylphosphatase mRNA has an inhibitory effect on protein expression. FEBS Letters, 1997, 417, 130-134.                                                                    | 2.8 | 10        |
| 141 | Survival or Death: The Redox Paradox. Antioxidants and Redox Signaling, 2009, 11, 2651-2654.                                                                                                                             | 5.4 | 9         |
| 142 | Conjugation of a GM3 lactone mimetic on carbon nanotubes enhances the related inhibition of melanoma-associated metastatic events. Organic and Biomolecular Chemistry, 2018, 16, 6086-6095.                              | 2.8 | 8         |
| 143 | β3-Adrenoreceptor Blockade Reduces Hypoxic Myeloid Leukemic Cells Survival and Chemoresistance.<br>International Journal of Molecular Sciences, 2020, 21, 4210.                                                          | 4.1 | 8         |
| 144 | Characterization of a novel nucleolytic activity of acylphosphatases. IUBMB Life, 1996, 40, 73-81.                                                                                                                       | 3.4 | 7         |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Stromal-induced mitochondrial re-education: Impact on epithelial-to-mesenchymal transition and cancer aggressiveness. Seminars in Cell and Developmental Biology, 2020, 98, 71-79. | 5.0 | 7         |
| 146 | β3-adrenoreceptor and tumor microenvironment: a new hub. Oncolmmunology, 2015, 4, e1026532.                                                                                        | 4.6 | 6         |
| 147 | Zoledronic Acid Inhibits the RhoA-mediated Amoeboid Motility of Prostate Cancer Cells. Current<br>Cancer Drug Targets, 2019, 19, 807-816.                                          | 1.6 | 5         |
| 148 | Unconventional roles of lactate along the tumor and immune landscape. Trends in Endocrinology and Metabolism, 2022, , .                                                            | 7.1 | 5         |
| 149 | Tumors and their stroma. Cell Cycle, 2013, 12, 204-204.                                                                                                                            | 2.6 | 3         |
| 150 | Cancer stemness and progression: mitochondria on the stage. Oncotarget, 2015, 6, 36924-36925.                                                                                      | 1.8 | 3         |
| 151 | Cytokine Receptor Signal Transduction Mechanisms in Immuno-Hematopoietic Cells. Tumori, 1993, 79,<br>92-99.                                                                        | 1.1 | 2         |
| 152 | Escaping from, moving towards, following a path, squeezing through: lots of opportunities for moving cells. Cell Communication and Signaling, 2010, 8, 25.                         | 6.5 | 2         |
| 153 | Claisened Hexafluoro Inhibits Metastatic Spreading of Amoeboid Melanoma Cells. Cancers, 2021, 13, 3551.                                                                            | 3.7 | 2         |
| 154 | Nutritional and metabolic signalling through <scp>GPCRs</scp> . FEBS Letters, 0, , .                                                                                               | 2.8 | 1         |
| 155 | Principles of Redox Signaling. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 3-40.                                                                     | 0.4 | 0         |
| 156 | Detection of Released CO2 by Radioactive Lactate. Bio-protocol, 2013, 3, .                                                                                                         | 0.4 | 0         |